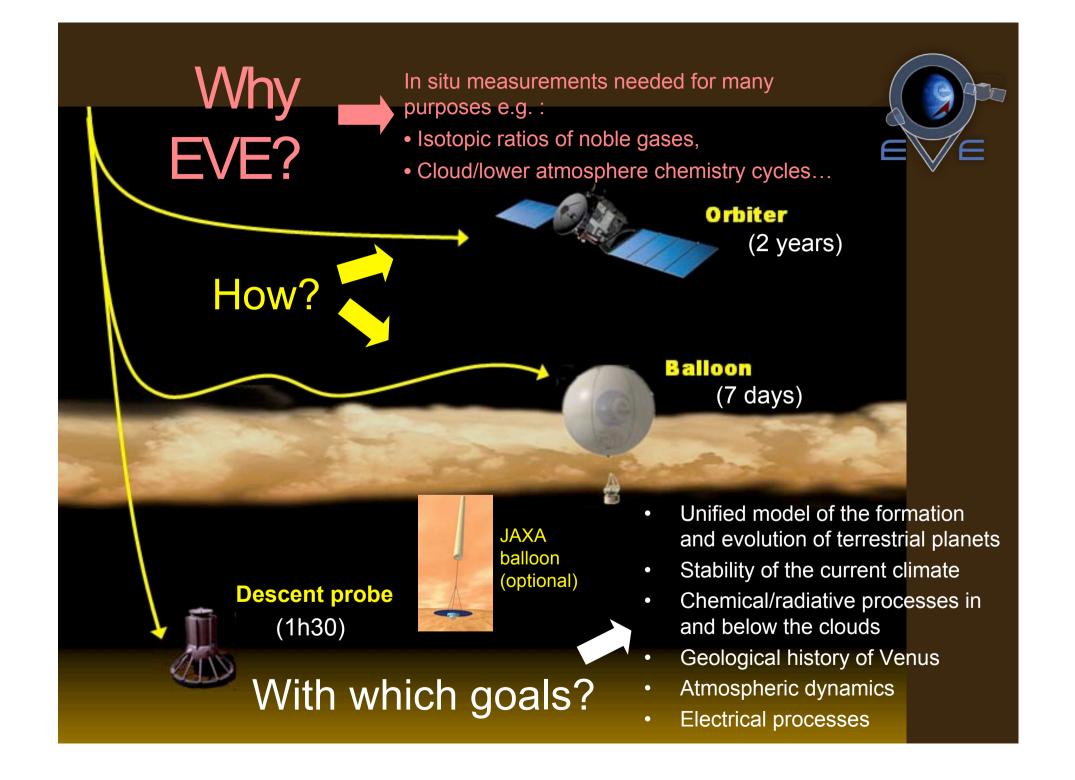

JPL

European Venus Explorer : an insitu mission to Venus using a balloon platform

E. Chassefière (PI), O. Korablev (Co-PI), T. Imamura (Co-PI), K. Baines (Co-PI), C. Wilson (Co-PI), K. Aplin, T. Balint, J. Blamont, C. Cochrane, Cs Ferencz, F. Ferri, M. Gerasimov, J. Leitner, Lopez-Moreno, B. Marty, M. Martynov, S. Pogrebenko, A. Rodin, D. Titov, J. Whiteway, L. Zasova and the EVE team.

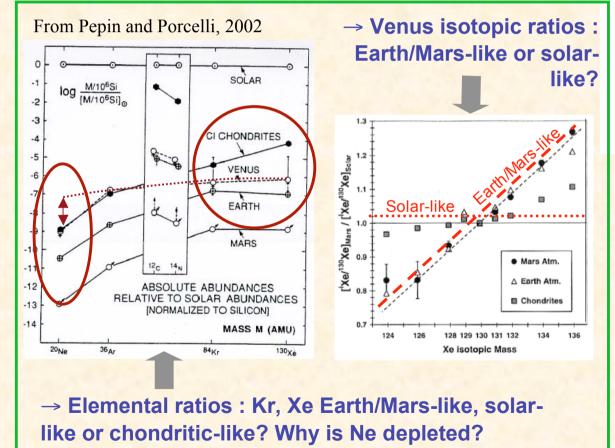
Presentation at the 37th COSPAR Scientific Assembly, July 13-20 2008, Montreal, Canada

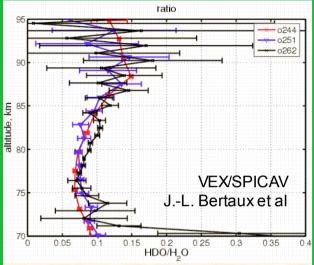
Why to go to Venus ?



Need for a unified scenario of terrestrial planet formation and evolution

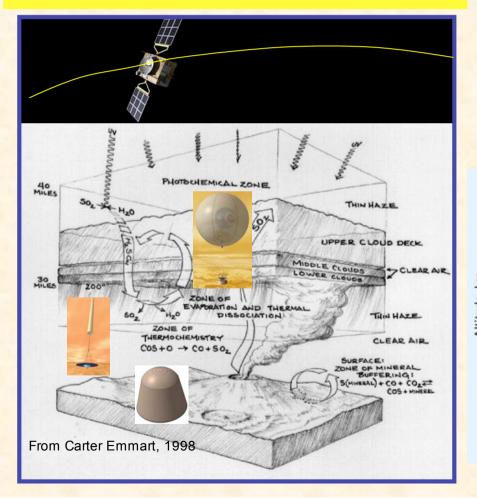
Necessary step toward interpreting future extrasolar Earth-like planet observations

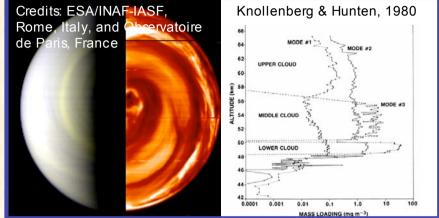

Venus : a key to our understanding of habitability and potential for life on Earth-like planets


Strong need for an in situ mission to understand the evolution and climate of Venus

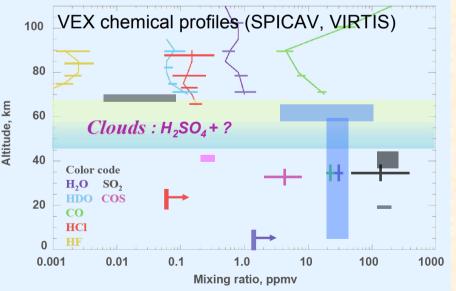
Baseline science return : evolution

In situ measurement from the balloon of noble gas abundances and stable isotope ratios, to study the record of the evolution of Venus.

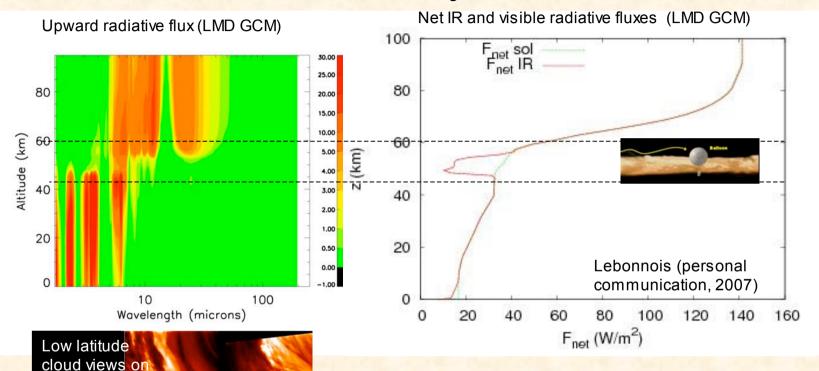

→ D/H profile to be measured in and below the clouds


→ S isotopes : nothing known (to be measured vs altitude/ time)

 \rightarrow N and other isotopes : accuracy to be improved


Baseline science return: chemistry

In situ balloon-borne measurements of cloud particle and gas composition, and their spatial variation, to understand the complex cloud-level chemistry.



Horizontal/vertical variability of deep clouds : strong need for sampling at different locations

Baseline science return: radiative balance and dynamics

subsequent

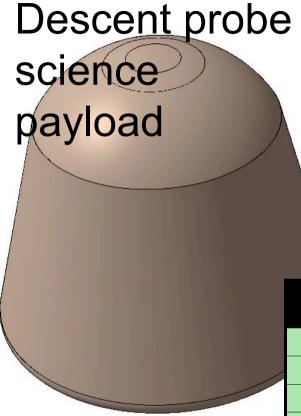
image

orbits (VIRTIS

de Paris-LESIA

ESA/ VIRTIS/ INAF-IASF/ Obs.

In situ measurements of environmental parameters and winds (from tracking of the balloon) for one rotation around the planet (7 days), to understand atmospheric dynamics and radiative balance in this crucial region.


Balloon science payload

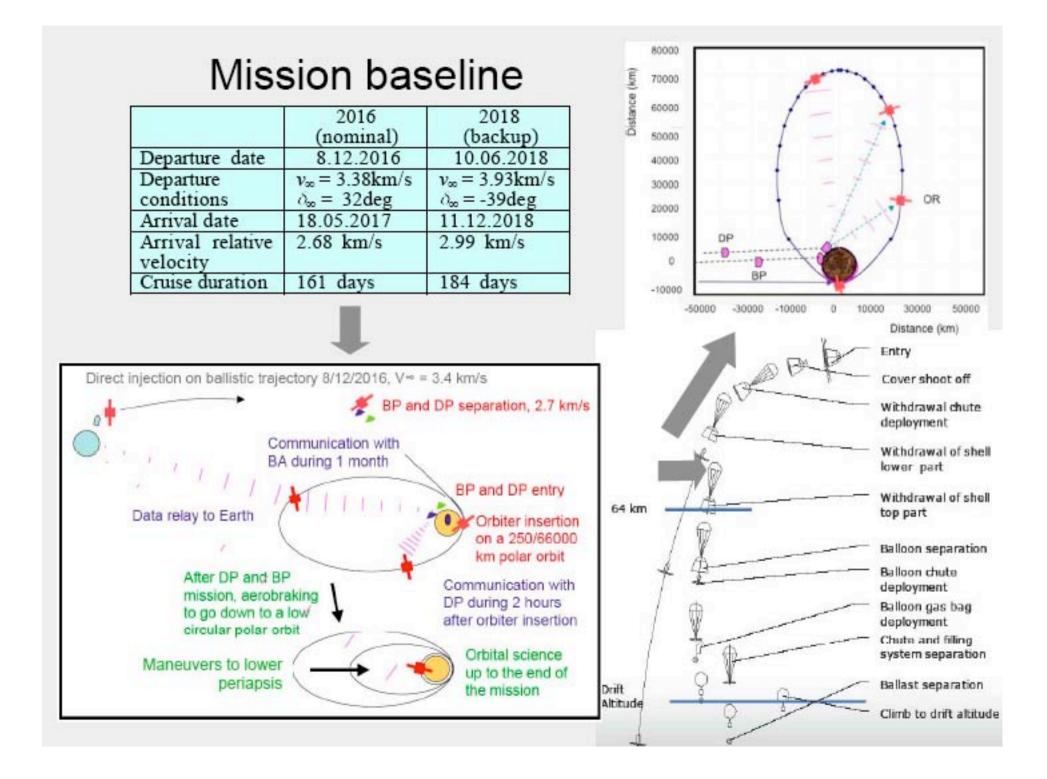
- Composition of atmosphere and aerosol particles
- Microphysical properties of aerosol particles
- Isotopic ratios of noble gases, and of light elements
- Local wind velocity from tracking the balloon's position
- Upwards and downwards fluxes of radiation
- Electrical properties of atmosphere and clouds
- Cloud particles for exobiological potential
- Vertical profiles of radiative fluxes, pressure, temperature, and chemical abundances

and the	
	-

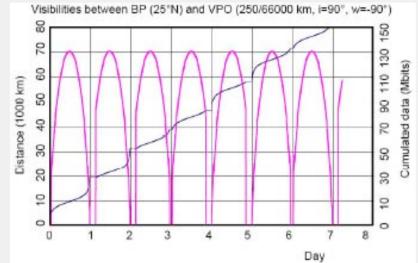
Instrument	Mass	Power	Data	TRL Level/	Potential provider (laboratory,
	(kg)	(W)	rate	heritage	consortium)
			(bps)		
GC/MS with	3.6	15W	30	4/5, Huygens, MSL,	IPSL (France), Open University
ACP		(peak)		ExoMars, Phobos	(UK), IKI (Russia), others.
Isotopic MS	4.0	15W	11.6	4/5, Beagle2,	Open Univ (UK) / IPSL (Fr) / U.
		(peak)		Rosetta	Berne (CH)
Nephelometer	1.0	2 W	1.4	3-4	NASA-led (Cornell/Ball Aerospace)
					with TU Delft. Other possibility:
					IKI
Optical	0.5	1.2 W	1.6	4	Univ. Oxford (UK)
package					
Atmospheric	0.4	2 W	0.4	5	FMI (Finland) / Oxford U & Open
package (p, T,				Huygens, Beagle 2,	U (UK) / Padova (Italy) / IAA
acc, sound)				ExoMars	(Spain) / IWF (Austria)
VLBI beacon	0.5	5 W	0.8	8	CNES (France) / TBD
/ USO					JIVE (NL) – Ground Segment
Electrical /	0.4	2.5 W	10.0	6	Eötvös Univ (Hungary) & RAL
EM package		(peak)		Compass-2, ISS	(UK)
ATR	2	5 W	5	4	IKI (with IFSI participation)
spectrometer		(peak)			
TOTAL	12.4 kg w/o margin; or 15 kg including 21% margin				

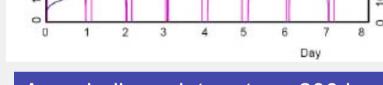
- Composition of atmosphere and aerosol particles vs altitude
- Isotopic ratios of major molecules vs altitude
- Microphysical properties of aerosols
- Atmospheric structure and wind during descent
- Radiative fluxes
- Imaging of the surface during descent and after landing
- Composition of the surface
- Electrical properties of atmosphere

Instrument	Mass (kg)	Power (W)	Data rate (bit/s)	TRL (2007)	Origin
Chemistry package	3.7	<20 W	3	4-8	IKI, IPSL, MPS, UK
Optical package	1.5	6 W	1.6	4	IKI, IPSL
Nephelometer	1	2 W	1.4	4	IKI, Inst Appl. Math.
Imaging system	0.7	3W	3+	6	IKI
ATR spectrometer	2	5 W	5	4	IKI, IFSI
Accelerometer	0.2	1 W	0.3	8	IKI, TSNIIMASH
Meteorological package	0.3	2 W	0.4	5-7	IKI/ FMI
Gamma-spectrometer	8	17W	2	6-8	IKI
Lightning detector	0.8	2.3W	0.5	6	IKI, Eötvös Univ
OBDH	1.7	5W	-	7	IKI
20% Margin	4				
Budget:	23.9 kg				Russia, EU


Heritage : Vega, Phobos, BepiColombo...

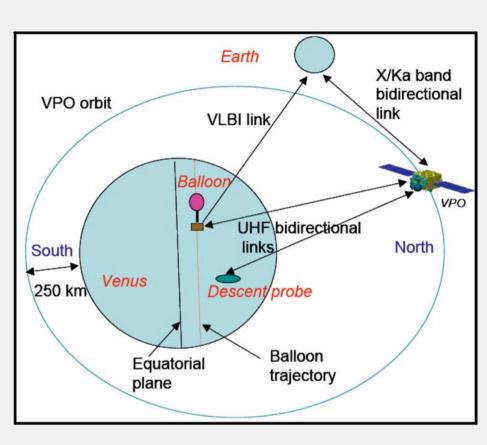
Orbiter science payload


- Escape fluxes
- Auroras
- Wind field
- Atmospheric composition
- Temperature profiles


- Electrical/ electromagnetic activity
- Cloud structure
- Subsurface structure

Instrument	Mass	Power	Data rate	TRL Level/	Potential provider
	(kg)	(W)	(kbps)	heritage	(laboratory, consortium)
Neutral mass spec.	3	4	~ 1	4, Giotto, Cassini, BepiColombo	IPSL (France)
Ion mass spec.	1.5	3-7	~ 2 (≥ 0.02)	4, BepiColombo	Consortium: IKI (Russia), Mullard (UK)
UV plasma imager	2.3	5	6	6, Nozomi, BepiColombo	Tohoku Univ. (Japan)
Sub-mm sounder	9.2	40	~ 9.2	8/9, Rosetta, Herschel	Max Planck Institute (Germany)
UV mapping spectrometer	1.5	5	40	9, MEX	Consortium: INAF (Italy), IKI (Russia)
Lidar (TBC)	7.4	70	4.8	4/9, Phoenix Mars	York Univ., MDA, CSA (Canada)
Infrared Spectrometer	2.4	7	4.4	5, Mars Express, Venus Express	Consortium: IKI (Russia), INAF (Italy)
High-speed / context camera	3.5	10	< 10	6, ground based	Greman Aerospace Center (Germany)
USO for radio science	1	1	0	9, in most of missions	e.g General Dynamics (UK)
EM Wave analyser	0.7	4-4.5	~ 4	7/5, Compass-2, ISS, sw. BepiColombo	Consortium: Eötvös Univ., BL Electronics (Hungary)
Subsurface Radar	7.2	9	≤ 80	7/8, MEX, MRO and ExoMars	Consortium: IPG, Obs. Midi-Pyrénées & de Bordeaux (France), GSFC, JPL and UTA (USA)
Magneto- meter	≤ 1.2	1.2	1.5	9, Oersted, Champ, Proba- 2, Swarm	Dan. Nat. Space Center (Danemark), Imperial College London (UK)
Gamma Flash Detector	2.3	3	10	7/5, Coronas-F	Consortium: IKI, SINP MSU (Russia)
20% margin	8.6				
Total :	51.8	\leq 170	210	-	ESA (& ECS), Russia, USA, Japan, <i>Canada</i>

Telecommunication strategy



Aver. balloon data rate : ≈200 bps

	Westbrock	Effelsberg	Green Bank	Medicina (Northern Cross)	Arecibo	SKA=30%
Aperture	14 x 25m	100 m	100 m	$30,000 \text{ m}^2$	300 m	$300,000 \text{ m}^2$
Frequency range (MHz)	300-450	350-450	300-500	406-410	425-435	300-500
Aperture efficiency	0.35	0.6	0.6	0.4	0.4	0.4
SNR (in 1Hz)	35	110	270	230	1100	3500
Max. data rate (bps)	20	65	150	130	600	2000
Aver. Data rate (bps)	≈2	≈7	≈20	≈15	<≈30	≈ 200
TRL (2007)	8	8	8	8	8	3

Data rate achievable by UHF transmission from balloon (or descent probe) direct to Earth

Balloon probe Heritage : Superpressure balloon

CNES Venera superpressure balloon (1970–1980) : 9 m Φ , fully developed, tested and space qualified

The EVE 5 m Φ balloon, twice smaller, is therefore fully proved (technically behind us!)

Preferred option for EVE : Phase change oscillating balloon Enhancement of science return wrt superpressure He H,O balloon 70000 bout 8 hr period Suspended mass Suspended 5000 mass Ξ 4000 j 30000 20000 10000 **CNES** calculations Time Ihr

1000	Sub system	Mass (kg)	Comments
12 M 100	Gondola	40	Includes 15 kg of scientific instruments
The second	Balloon	17	Includes 10 kg of envelop and 7 kg of He
TON .	Gas storage system	23	Based on He gas tank.
	Russian Entry System	90	Parachute, inner structure, back cover
	Total	170	

International cooperative scheme

170 Co-Is from 70 laboratories

18 countries including Russia, Japan, USA and Canada

- EUROPE
 - The spacecraft,
 - the balloon platform,
 - the Kourou element of the launch costs and
 - the science payload under national contribution.
- RUSSIA
 - The dry Soyuz launcher,
 - the descent probe,
 - the entry/descent systems for both balloon and descent probe and
 - a contribution to the science payload and data analysis.

- JAPAN
 - A small balloon for low altitude studies (option),
 - A ionospheric UV imager

• USA & CANADA

- Comprehensive science and instrument hardware involvements and
- the possibility of using NASA/JPL developed Venus
 balloon technology through international collaboration, under NASA's Mission of Opportunity (MoO) program.

Key technologies

- Orbiter :
 - Thermal control : Vex/Bepi heritages
 - Aerobraking : used 4 times by NASA
- Descent probe/ entry-descent system for balloon:
 - Systems : Venera/Vega heritages
 - Instruments : Vega, Huygens, BepiColombo, etc heritage
- Balloon
 - Envelope and inflation system (CNES) : Vega heritage
 - Gondola (ESA) : instruments mature, cells, batteries, DPU at TRL 3 to 5 (cf ESA VEP TRS study)
 - Descent-entry system
 (Roscosmos) : Venera heritage

- NO TECHNICAL SHOW-STOPPER IDENTIFIED
- MULTIPLE AND STRONG HERITAGES
- POWERFUL MINIATURIZED IN-SITU INSTRUMENTS (EXOMARS, MSL, ...)

Result of Cosmic Vision selection process

- EVE has not been selected by ESA SSWG,
- but it has been highly ranked scientifically :

"The European Venus Explorer (EVE) was seen by the SSWG as an attractive mission which was highly ranked scientifically. However, programmatically (with three ESA mission programmes currently operating or in implementation at terrestrial planets) the SSWG considered selection at this stage premature."

- What are the news, and next steps?
- EVE is a « Science Theme » of the ESA Cosmic Vision Technology Development Plan
- Several phase A studies for the EVE balloon are recommended by ESA (under national funding)
- Second workshop "Earth and Space Sciences in Europe using CNES Balloons », September 2008, Pau, France.

• Venus Flagship mission under definition at NASA : balloons + descent probes + orbiter (2020-2025)