Planetary Science Vision 2050 Workshop

February 27–28 and March 1, 2017

NASA Headquarters, Washington DC

FUTURE TECHNOLOGIES: SYNTHESIS Wednesday, March 1, 2017 – 1:00 p.m.

Moderator: Panel Members: Tony Freeman Brook Lakew Jay Falker Elizabeth Turtle Deborah Amato (synthesizer)

Themes/Categories of Technology

- Instrumentation
- Platforms Architectures
- Flight System Technology
 - Communications, Infrastructure
 - Power
 - Many others

• Extreme Environments

Advanced Propulsion/Transportation

- Synergy with HEOMD/Commercial Space
- Additional observations

"A lot of the technologies that we need for the things that we are going to talk about this week will take more than a decade to mature."

Topics from the Technology Poster in the Lobby

- Life detection "non-DNA specific detection approaches"
- In situ measurements "multipoint measurements"
- Applied planetary science "small sat instrument for composition"
- Remote sensing measurements "metamaterials based instrument"
- Mobility and access "1,000 km range rovers"
- Power generation "Fuel Cells!"
- Communications "small sat optical comm"
- Contamination control "self-DHMR w/ heaters in field"
- Navigation "Fire-n-Forget' navigation tell us when you get to destination"
- Sample return "cryogenic SR capability"
- Propulsion "laser propulsion"
- Access to space "how to lower access to space cost?"
- Autonomy "optimize science collection"

Instrumentation

- Life detection new tools and methods
 - Look for biosignatures at nanoscale
 - Advanced mass spectrometers
- In situ measurements
 - Planetary cores
- Remote sensing better spectra, better resolution, better models
- Miniaturization
- Sample return
 - Sample retrieval and handling
 - Tools, systems, encapsulation and return
 - Scooping and digging
 - Sampling on slopes
 - Melting subsurface ice
 - Immersive virtual reality for sample selection/collection
 - Cryogenic sample return
 - Sample return from the outer solar system
- Automated microfluidic systems

Instrumentation cont.

- Advanced instruments (asteroids):
 - High definition imaging camera
 - Space-qualified spatial heterodyne spectrometer
 - Array of seismometers
 - Penetrator package
- Advanced laboratory analytical tools (+sustainability)
- Sample analysis instrumentation needs:
 - In 2020s: Provide elemental, molecular, isotopic info at scales down to a single atom; preserve organics, hydrated minerals
 - In 2030s: Vacuum transfer, at 100K (measurement of water ices/volatile organics, pristine irradiated surfaces)
 - In 2040s: Be able to do everything at 10K
 - Take advantage of new cryoelectronics, thermoelectronics
- Improved signal detection, noise rejection, new detectors, new vantage points
- Printable instruments and electronics

Platforms - Architectures

- Develop multi-target mission architectures
 - e.g. Large s/c carrying probes to be dropped off at various locations
- Establish solar-system-wide infrastructure for communications and navigation
- The Moon
 - Laboratory for planetary science
 - Training ground for the solar system exploration
- Extraordinary apertures
 - Leverage large observatories
 - In-space and self-assembly of structures
- New remote sensing methods
 - Starshade with tightly aligned telescope
 - Solar gravity lens

Platforms – Architectures cont.

- Long-term environmental monitoring
 - Pristine environmental characterization
- Mother-daughter spacecraft
 - Queen bee swarm spacecraft system
- Smallsats, cubesats, chip sats/femtosats
 - Distributed sensors, multi-point measurements
- Modular/standard spacecraft with standard interfaces/volumes for customized instruments
- "Sciencecraft"
- Reduce mission and access to space costs

Flight System Technology

- Advanced communications needed
- ISRU methods water, fuel, building material
- Autonomous operations, landing and hazard avoidance; fully autonomous spacecraft
- Entry, descent/ascent, and landing; Aerocapture
- Mobile submersibles technology development not needed, difficulty is getting them into the (distant) ocean
- Contamination control/planetary protection
- Hard landers and penetrators

Flight System Technology cont.

- MEMS manufacturing
- Advanced manufacturing (3D printing)
- Ubiquitous intelligence in machines
- Quantum computing
 - Big data mining
- On-board signal processing

- Scalable robotic systems: Lander/rover access, mobility and robustness
- Power
 - Energy storage (all-temperature)
 - Compact Radioisotope Thermoelectric Generators
 - Surface power systems
 - Advanced power for outer solar system bodies (KBO)

Extreme Environments

- High temperature electronics
- High temperature and low temperature
- High pressure operations
- Radiation tolerance
- Highly corrosive environment
- Unknowns in the environment...

Advanced Propulsion/Transportation

- Access to new terrains (Mars)
- Propulsion technology to get to the outer planets
 - Robotic missions and Humans
 - Launch energy and delta-V challenges for Mercury too
- Aerial mobility
- Mobile *in situ* exploration
- Radioisotope electric propulsion
- Photonic propulsion

Synergy with HEOMD/Commercial Space

- Human spaceflight program needs to work hand in hand with Science program
 - In-space assembly of large structures
- ISRU *in situ* resource utilization
- Human-aided sample retrieval/return
- SLS Space Launch System (heavy lift)
- Orion crew vehicle
 - Use as relay for surface activity (rover)

Additional Observations

- Advance planetary climate models to global system models
- Build models that merge datasets from sample analysis, experimentation, and remote sensing/telescopic/robotic observations
- Use the Moon as a testbed for technology
 - And for Human-aided science elsewhere in the solar system
- On the verge of breaking through a barrier of risk aversion and sending smaller, less reviewed s/c to space
- Do we need a Technology Decadal?

Technology Plans and Roadmaps

- Ocean Worlds has a technology development plan
- Mercury Lander report from 2010
 - High temperature
- Venus Technology Plan
- Mars 2020-2050 Exploration roadmap
- Others to include?

Common threads

"All means of exploration should be integrated together."

- Collaboration and working together
 - Between the various disciplines of Planetary Science
 - Between engineering and science
 - Between the sciences: Planetary, Helio, Astro, Earth
 - Between Human Exploration and Planetary Science
 - Leverage commercial space developments
 - Diversity of workforce is important
- We can't do everything all at once
 - Maintain a balanced and prioritized program
 - Budget (and political) constraints should be considered

Image – J Oleary, .M Amato inspired by PS