Chapter Overview

1. Introduction

2. Mars
 2.1. Chemical composition of Mars’ atmosphere and its variations
 2.2. Global-mean models
 2.2.1. CO₂ stability problem and basic CO₂-H₂O chemistry
 2.2.2. Published global-mean models
 2.2.3. Nitrogen chemistry
 2.2.4. Sulfur chemistry
 2.2.5. Upper atmosphere and ionosphere
 2.3. Variations of Mars photochemistry in one-dimensional models
 2.3.1. Steady-state models for local conditions
 2.3.2. Time-dependent models
 2.4. Three-dimensional photochemical general circulation models
 2.5. Methane and related problems
 2.6. Conclusions: Unsolved problems

3. Venus
 3.1. Observations of the chemical composition
 3.2. Chemistry of the lower atmosphere
 3.2.1. H₂O-H₂SO₄ system in Venus’ clouds and kinetic problem for OCS and CO
 3.2.2. Self-consistent chemical kinetic model
 3.2.3. Sulfur atmospheric cycles
 3.2.4. Latitudinal variations of CO and OCS
 3.3. Photochemistry of the middle atmosphere
 3.3.1. History of the problem
 3.3.2. Photochemistry at 47–112 km
 3.4. Venus nightglow and nighttime photochemistry
 3.4.1. Night airglow on Venus
 3.4.2. Nightglow excitation problems
 3.4.3. Nighttime chemistry at 80–130 km on Venus
 3.4.4. OH airglow, ozone, and O₂ dayglow
 3.4.5. O₂ and NO nightglow in general circulation models
 3.5. Some unsolved problems
4. Titan
 4.1. Observations of the chemical composition
 4.2. Photochemical modeling of Titan’s atmosphere and ionosphere
 4.2.1. Published models for Titan
 4.2.2. Initial data
 4.2.3. Hydrocarbons, Ar, and H₂
 4.2.4. Nitriles
 4.2.5. \(\text{N}_n\text{H}_v \), CH₂NH, and CH₃NH₂
 4.2.6. Oxygen species
 4.2.7. Ionosphere
 4.2.8. Production of haze
 4.3. Unsolved problems