FE-SULFATES ON MARS:
Considerations for Martian Environmental Conditions, Mars Sample Return & Hazards

P. L. King1,2, M. D. Lane3, B. C. Hyde2,
M. D. Dyar4, & J. L. Bishop5

1Inst. Meteoritics, Univ. New Mexico, Albuquerque, NM USA
2Dept. Earth Science, Univ. Western Ontario, London, ON Canada
3Planetary Science Institute, Tucson, AZ USA
4Mount Holyoke College, South Hadley, MA USA
5SETI Institute/NASA-Ames Res. Cen., Mountain View, CA USA
Evidence for Fe-sulfates on Mars

- Fe-sulfates indicate (limited) water
- Sensitive to environmental conditions
- To preserve / unravel mineralogy during sample return we need to know how Fe-sulfates behave under different environmental conditions
Fe$^{3+}$-salts at Gusev Crater

Variety of localities, Gusev Crater (Johnson et al., 2007)
1. Visible-near IR – spectral deconvolution

Paso Robles soil, Gusev Crater (Lane et al., 2008)
2. Visible-near IR spectral matching
3. Thermal IR spectral deconvolution
4. Mössbauer spectral matching
5. Constraints from APXS... v. low K & Na

<table>
<thead>
<tr>
<th>Paso Robles (Sol 400, P2551)</th>
<th>Arad (Sol 721, P2538)</th>
<th>Tyrone (Sol 790, P2531)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FOV
- Paso Robles: ~25 cm
- Arad: ~60 cm
- Tyrone: ~65 cm

False-color images from Gusev Crater (blue=432 nm, green=535 nm, red=754 nm) Johnson et al. (2007)
Fe-sulfates identified with ≥ 4 methods	**	Ferricopiapite	$\text{Fe}^{3+} _{4.6}(\text{SO}_4)_6(\text{OH})_2\cdot20\text{H}_2\text{O}$	(Para)coquimbite	$\text{Fe}^{3+} _2(\text{SO}_4)_3\cdot9\text{H}_2\text{O}$	Fibroferrite	$\text{Fe}^{3+}\text{SO}_4(\text{OH})\cdot5\text{H}_2\text{O}$		
Fe-sulfates identified with ≥ 3 methods		Parabutlerite	$\text{Fe}^{3+}(\text{SO}_4)(\text{OH})\cdot2\text{H}_2\text{O}$	Rhomboclase	$(\text{H}_3\text{O})\text{Fe}^{3+}(\text{SO}_4)_2\cdot3\text{H}_2\text{O}$				
Fe-sulfates identified with ≥ 1 method		$\text{H}_3\text{O}^+\text{jarosite}$	$\text{H}_3\text{O}^+\text{Fe}^{3+} _6(\text{SO}_4)_4(\text{OH})_{12}$	Bilinite	$\text{Fe}^{2+}\text{Fe}^{3+} _2(\text{SO}_4)_4\cdot22\text{H}_2\text{O}$	Butlerite	$\text{Fe}^{3+}(\text{SO}_4)(\text{OH})\cdot2\text{H}_2\text{O}$	Metahohmannite	$\text{Fe}^{3+} _2(\text{SO}_4)_2\text{O}\cdot4\text{H}_2\text{O}$
Bulk chemistry of the precipitating solution

Solutions in equilibrium with ferricopiapite-coquimbite have wt% Fe$_2$O$_3$: H$_2$O : SO$_3$ = 8-20 : 52-60 : 25-32

Mol% Fe / SO$_4$ ~ 0.5

Modified from Merwin & Posnjak (1937)
Forming Fe-S-O-H phases

Addition of H₂SO₄ to basalt via volcanic/hydrothermal SO₂

Oxidation & hydration of Fe sulfides to produce Fe²⁺ & SO₄²⁻/HSO₄⁻

Fe²⁺-sulfates e.g. melanterite

Summarized in King & McSween (2005)
Forming Fe-S-O-H phases

note- not like Ca- or Mg-sulfates

Modified after King & McSween (2005)
Fe$^{3+}$-sulfates via dehydration-oxidation-neutralization

Modified after King & McSween (2005)
Thermodynamic modeling

• Thermodynamic database & compositions chosen have strong influence on results

• We used
 39 minerals & species, plus
 • $a_{Fe}=0.3$, $a_{HSO_4^{-}}=a_{SO_4^{2-}}=0.08$ based on Paso Robles soils
 • Fe-S-O aqueous species *not* suppressed
Oxidation-dehydration diagram, pH = 1

Ferricopiapite - with 20H$_2$O
- only stable at high $\log a$H$_2$O
- fO$_2$ has a minor effect on its stability

Ferricopiapite: Fe(SO$_4$)$_2$
Oxidation-neutralization diagram, \(\log aH_2O = 0 \)

- Ferricopiapite
 - \(pH \sim 0.5 \) to 2

If \(HSO_4^- \) or \(SO_4^{2-} \) increased:
 - S-mineral fields extend to lower pH
 - + Melanterite
 - + Rhomboclase
Oxidation-neutralization diagram

\[\log a_{H_2O} = 0, \text{ oxides suppressed} \]

- Ferricopiapite
 - pH ~ 0.5 to 2.5

- SUITES of minerals help us to better determine environmental conditions

- Addition of K & P stabilizes K-jarosite & strengite

- Ferri-copiapite
- Schwertmannite
- Bilinite
- FeSO\(_4\)
- FeSO\(_4\)\(^+\)
- FeSO\(_4\)\(^{++}\)
- FeHSO\(_4\)\(^{++}\)
- Fe\(^{++}\)

25°C
Summary of Fe$^{3+}$-sulfate stability with Paso Robles composition solutions

Ferricopiapite
$pH<2.5$, $RH>~90\%$, $logfO_2>-30$

(Para)coquimbite difficult to form

Fibroferrite & *(para)butlerite* no thermodynamic data, we know $logaH_2O/pH$, but we don’t know the lines’ intercepts

Rhomboclase forms at more acidic, S-rich conditions
Temperature effects on a dehydration-neutralization diagram.
Recommendations for Fe-sulfate return

Sample Containment
- Fe	extsuperscript{2+}-(Fe	extsuperscript{3+})-sulfates: fO	extsubscript{2} variations important
- Fe	extsuperscript{3+} sulfates - fO	extsubscript{2} variations not v. important
- Relative humidity: seal samples in containers on Mars
 (know moles of O\textsubscript{2} + aH\textsubscript{2}O, calculate volume of martian air needed to keep minerals stable using PV = nRT). Understand that changes may occur, but know how to account for it.
- Temperature dependence of reactions: limited C\textsubscript{p} data- need more
- Sulfates may get “sticky” or “clump”, form acids, or Fe-oxides/hydroxides/oxyhydroxides
- Engineering & cost concerns aside:
 - Put samples in separate containers
 - Use acid-resistant materials
 - Use lids & insulation
 - Enclose a T-RH-P data logger
To maximize information from returned Fe-sulfates we need to

Understand Environmental Conditions
- Need to be able to characterization small Fe-sulfates, so we can determine environmental conditions
- Understand reaction kinetics of small particles (with high surface/volume)
- Have more thermodynamic data for Fe$^{3+}$-sulfate & phosphate phases & possible gels/deliquescence products
- Understand that disequilibrium may have occurred

Unravel Habitability
- Need to know effects of solution bulk composition, pH, fO$_2$ & aH$_2$O on life
- Understand radiation shielding properties of Fe-sulfates in protecting any life
Summary

• Thermodynamic models are useful for constraining environmental conditions & optimal conditions for sample return, especially if suites of Fe-sulfate minerals are identified.

• Ferricopiapite, if present, occurs at pH<2.5, RH>~90%, logfO₂>-30

Funding from the Canadian Space Agency Space Science Exploration Program
Fe-sulfate hazards

Fe\(^{2+}\)-sulfates - not very toxic

Fe\(^{3+}\)-sulfates - toxic

- Overall, likely insufficient volume to be extremely hazardous (see abstract)
- Acid Fe-sulfates may produce irritation if ingested, inhaled or touched

\[\text{Fe}^{3+}(\text{H}_2\text{SO}_4)(\text{OH})(\text{SO}_4).3\text{H}_2\text{O} \rightarrow \text{rhombooclase}\]

\[\text{H}^+ + 2\text{SO}_4^{2-} + \text{Fe}^{3+} + 4\text{H}_2\text{O} \rightarrow \text{acid}\]