Lunar Reconnaissance Orbiter
OVERVIEW

John Cavanaugh
Laser Altimeter Systems Engineer
NASA Goddard Space Flight Center
Lasers & Electro-Optics Branch
John.F.Cavanaugh@nasa.gov
LRO Identified in Exploration Vision

“Starting no later than 2008, initiate a series of robotic missions to the Moon to prepare for and support future human exploration activities”
- Space Exploration Policy Directive (NPSD31), January 2004

Rationale
- Environmental characterization for safe access
- Global topography and targeted mapping for site selection and safety
- Resource prospecting and assessment of In-Situ Resource Utilization (ISRU) possibilities
- Technology “proving ground” to enable human exploration
2008 Lunar Reconnaissance Orbiter (LRO) First Step in the Robotic Lunar Exploration Program

LRO Objectives

- Characterization of the lunar radiation environment, biological impacts, and potential mitigation. Key aspects of this objective include determining the global radiation environment, investigating the capabilities of potential shielding materials, and validating deep space radiation prototype hardware and software.

- Develop a high resolution global, three dimensional geodetic grid of the Moon and provide the topography necessary for selecting future landing sites.

- Assess in detail the resources and environments of the Moon's polar regions.

- High spatial resolution assessment of the Moon's surface addressing elemental composition, mineralogy, and Regolith characteristics.

Objective: The Lunar Reconnaissance Orbiter (LRO) mission objective is to conduct investigations that will be specifically targeted to prepare for and support future human exploration of the Moon.
Develop an understanding of the Moon in support of human exploration (hazards, topography, navigation, environs)

Understand the current state and evolution of the volatiles (ice) and other resources in context

Biological adaptation to lunar environment (radiation, gravitation, dust...)

LRO Mission Overview
Science and Exploration Objectives

Prepare for Human Exploration

When • Where • Form • Amount

Topography & Environments

Polar Regions

ICE (Resources)

Human adaptation
LRO Mission Overview
Flight Plan - Direct using 3-Stage ELV

- Launch on a Delta II rocket into a direct insertion trajectory to the moon.
- On-board propulsion system used to capture at the moon, insert into and maintain 50 km altitude circular polar reconnaissance orbit.
- 1 year mission
- Orbiter is a 3-axis stabilized, nadir pointed spacecraft designed to operate continuously during the primary mission.

Nominal Cis-lunar Trajectory
Solar Rotating Coordinates

Insertion and Circularization
Impulsive ΔVs (m/s)
1 – 344.24
2 – 113.06
3 – 383.91
4 – 11.45
5 – 12.18

100 and 50km mission orbits

6-hour orbit
12-hour orbit
LRO Mission Overview
Orbiter - Initial Configuration

<table>
<thead>
<tr>
<th>Preliminary LRO Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass</td>
</tr>
<tr>
<td>Power (bus orbit ave.)</td>
</tr>
<tr>
<td>Measurement Data Volume</td>
</tr>
</tbody>
</table>

LRO Preliminary Design
LRO Mission Overview
Orbiter - Latest Configuration 1/06
LRO Instruments Provide Broad Benefits

<table>
<thead>
<tr>
<th>INSTRUMENT</th>
<th>Measurement</th>
<th>Exploration Benefit</th>
<th>Science Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRaTER</td>
<td>Tissue equivalent response to radiation</td>
<td>Safe, lighter weight space vehicles that protect humans</td>
<td>Radiation conditions that influence life beyond Earth</td>
</tr>
<tr>
<td>(BU+MIT) Cosmic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ray Telescope for</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diviner</td>
<td>300m scale maps of Temperature, surface ice, rocks</td>
<td>Determines conditions for systems operability and water-ice location</td>
<td></td>
</tr>
<tr>
<td>(UCLA) Lyman-Alpha Mapping Project</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAMP</td>
<td>Maps of frosts in permanently shadowed areas, etc.</td>
<td>Locate potential water-ice (as frosts) on the surface</td>
<td></td>
</tr>
<tr>
<td>(SWRI) Lyman-Alpha Mapping Project</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEND</td>
<td>Hydrogen content in and neutron radiation maps from upper 1m of Moon at 5km scales, Rad > 10 MeV</td>
<td>Locate potential water-ice in lunar soil and enhanced crew safety</td>
<td></td>
</tr>
<tr>
<td>(Russia) Lunar Exploration Neutron Detector</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOMA</td>
<td>~50m scale polar topography at < 1m vertical, roughness</td>
<td>Safe landing site selection, and enhanced surface navigation (3D)</td>
<td>Geological evolution of the solar system by geodetic topography</td>
</tr>
<tr>
<td>(GSFC) Lunar Orbiter Laser Altimeter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LROOC</td>
<td>1000’s of 50cm/pixel images (125km²), and entire Moon at 100m in UV, Visible</td>
<td>Safe landing sites through hazard identification; some resource identification</td>
<td>Resource evaluation, impact flux and crustal evolution</td>
</tr>
<tr>
<td>(NWU+MSSS) Lunar Recon Orbiter Camera</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
National Academy of Sciences *NRC Decadal (2002)* lists priorities for the MOON *(all mission classes thru 2013)*

<table>
<thead>
<tr>
<th>NRC Priority Investigation</th>
<th>NRC approach</th>
<th>LRO measurements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geodetic Topography (crustal evolution)</td>
<td>Altimetry from orbit (with precision orbits)</td>
<td>Global geodetic topography at ~100m scales (< 1 m rms)</td>
</tr>
<tr>
<td>Local Geologic Studies In 3D (geol. Evolution)</td>
<td>Imaging, topography (at m scales)</td>
<td>Sub-meter scale imaging with derived local topography</td>
</tr>
<tr>
<td>Polar Volatile Inventory</td>
<td>Spectroscopy and mapping from orbit</td>
<td>Neutron and IR spectroscopy in 3D context + UV (frosts)</td>
</tr>
<tr>
<td>Geophysical Network (interior evolution)</td>
<td>In situ landed stations with seismometers</td>
<td>Crustal structure to optimize siting and landing safety</td>
</tr>
<tr>
<td>Global Mineralogical Mapping (crustal evolution)</td>
<td>Orbital hyperspectral mapping</td>
<td>100m scale multispectral and 5km scale H mapping</td>
</tr>
<tr>
<td>Targeted Studies to Calibrate Impact Flux (chronology)</td>
<td>Imaging and in situ geochronology</td>
<td>Sub-meter imaging of Apollo sites for flux validation and siting</td>
</tr>
</tbody>
</table>
Comparison to International Systems Demonstrate LRO Uniqueness and Value

<table>
<thead>
<tr>
<th>Reqt’s for LRO (from NASA ORDT, and ESMD RLEP Reqt’s 9/04; NRC Decadal, 2002)</th>
<th>2008 NASA LRO [50km orbit, 1 yr+] Competed Payload</th>
<th>SELENE (JAXA orbiter ~ 2007) [100km orbit, 1 yr]</th>
<th>SMART-1 (ESA lunar 2005 orbiter) [250km periapsis]</th>
<th>Chandrayaan (ISRO 2007-2008 launch) [100+ km orbit]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiation Environment</td>
<td>Global assessment including neutrons, GCR (imaging NS, Rad Sensor)</td>
<td>Highly limited overlap in some narrow energy ranges</td>
<td>Limited to some energy ranges</td>
<td>TBD</td>
</tr>
<tr>
<td>Biological Adaptation</td>
<td>Biological responses to radiation (Rad Sensor)</td>
<td>Not addressed</td>
<td>Not addressed</td>
<td>Not addressed</td>
</tr>
<tr>
<td>Shielding materials (test-beds)</td>
<td>Shielding expt’s with TEP (Rad Sensor)</td>
<td>Not addressed</td>
<td>Not addressed</td>
<td>Not addressed</td>
</tr>
<tr>
<td>Geodetic topography (global)</td>
<td>10’s m x,y, with < 1m vertical precision, attn to poles (Lidar)</td>
<td>1.6 km x, y at > 20 m vertical precision (RMS) [not meet LRO goals]</td>
<td>Not addressed</td>
<td>Not addressed</td>
</tr>
<tr>
<td>H mapping to assess ice</td>
<td>Landform scale at 100 ppm (~5 km scale at poles) (imaging NS)</td>
<td>160km scale via GRS (does not meet LRO goals)</td>
<td>Limited to 100’s of km scale (H) [does not meet LRO goals]</td>
<td>Some potential, but depends on contributed sensors</td>
</tr>
<tr>
<td>T mapping cold traps (polar)</td>
<td>Landform scale at 3-5K (40-300K): -300m scale (IR mapper)</td>
<td>Not addressed</td>
<td>Not addressed</td>
<td>TBD</td>
</tr>
<tr>
<td>Putative ice deposits at poles</td>
<td>~25-400m scales in shadows (Imager, Lidar, NS, IR, UV)</td>
<td>Not addressed in this mission (cf. GRS)</td>
<td>Not addressed</td>
<td>TBD (contributed S-band SAR and Mineral mapping from US?)</td>
</tr>
<tr>
<td>Sub-meter imaging for landing site assessment</td>
<td>Targeted, meter-scale feature detection, hazards (Imager, Lidar)</td>
<td>Not addressed: best imaging is ~10m/pixel stereo, MS imaging (10+ VISNIR bands)</td>
<td>Not addressed (best imaging is 10-100 m/pixel)</td>
<td>Not addressed, but imaging (MS) will be included (10’s m/pixel)</td>
</tr>
<tr>
<td>Polar illumination</td>
<td>High time-rate polar imaging (Imagers)</td>
<td>Partially addressed, but frequency TBD?</td>
<td>Limited</td>
<td>TBD</td>
</tr>
<tr>
<td>OTHER</td>
<td>Far UV imaging for frosts and lunar atmosphere (farside gravity from lidar)</td>
<td>Particles and Fields, Farside gravity, elemental chemistry</td>
<td>Particles and Fields, etc.</td>
<td>Likely (contributed mineralogy mapping ?)</td>
</tr>
</tbody>
</table>
LRO Measurement Objectives Addressed by LOLA

- Determine the global geodetic grid for the Moon in three dimensions with high spatial resolution:
 - (a) global topography,
 - (b) characterization of landing sites

Present altimeter coverage:
- Apollo (red)
- Clementine (black)

- Assess the resources in the Moon's polar regions (and associated landing site safety evaluation), including characterization of permanently shadowed regions and evaluation of any water ice deposits.
Lunar Orbiter Laser Altimeter (LOLA) Measurements

- **Range to the surface**
 - shape & topography
- **Slope of the surface in 2 orthogonal directions**
 - Landing site characterization
- **Roughness of the surface**
 - height of the rocks
- **Reflectance of the surface**
 - locations of possible surface ice

South pole of Mars: Reflectance Map

South pole of Mars: Topography image

(made solely from pulse time-of-flight data, NOT a camera image)

South pole of Mars: MOLA Data
LOLA Instrument Overview

- LOLA measures:
 - Range to the lunar surface (pulse time-of-flight)
 - Reflectance of the lunar surface (Received Energy/Transmitted Energy)
- LOLA operates continuously during LRO mapping mission
- LRO provides time, attitude and orbit position
- LOLA Science Operations Center ingests LOLA & LRO data and produces:
 - Digital Elevation Model (DEM) products, lunar gravity model

LOLA sample pattern on lunar surface
LRO: Science and Exploration

• LRO will fill in critical knowledge gaps of the Moon
 • Returning to the Moon without LRO would confine any future landing to equatorial sites where we have existing, but incomplete reconnaissance with known risk
 • Reduces risks and cost of all future landed missions (robotic and human)
• LRO completely addresses the majority of the National Academy of Sciences (NRC, 2002) scientific priorities for the Moon (from orbit)
 • LRO measurement sets will resolve key unknowns about the lunar crust (3D), sources and sinks of polar volatiles (i.e., the lunar “water” cycle”), and history of its earliest crust
 • LRO will enable scientific discoveries about the “other Moon” (polar regions) not explored with Apollo (i.e., localization and inventory of water ice)
 • LRO will put the Moon in a more complete context with respect to Earth and Mars

Apollo 15 set down on the rim of a small crater, damaging the engine bell and tilting at ~10°
Slide Credits

Dr. Gordon Chin
NASA GSFC
LRO Project Scientist

Dr. David Smith
NASA GSFC
LOLA Principal Investigator

Dr. Maria Zuber
MIT
LOLA Deputy Principal Investigator

Craig Tooley
NASA GSFC
LRO Project Manager

John Cavanaugh
NASA GSFC
LOLA Instrument Systems Engineer