Education and
Public Engagement
at the Lunar and Planetary Institute
Explore! Mars: Inside and Out

Crater Creations


In the 30-45 minute Crater Creations activity, teams of children ages 8-13, experiment to create impact craters and examine the associated features. The children observe images of Martian craters and explore how the mass, shape, velocity, and angle of impactors affects the size and shape of the crater.

This activity has been modified from Lava Layering, an activity in Exploring the Moon: a Teacher's Guide with activities for Earth and Space Sciences, NASA Education Product EG-1997-10-116-HQ by J. Taylor and L. Martel.

What's the Point?


For each child:

For each team of 4 to 8 children:

For the facilitator:



1. Introduce the activity by asking the children what they think will happen when an impactor — a heavy object — is dropped into one of the boxes.

2. Divide the children into groups of 3 to 5 and have each group stand by a box. Invite them to begin experimenting by having them select one impactor to drop and determining from what height they will drop it (encourage them to not throw their impactor). What do they think will happen? Have each teams drop their impactor one at a time.

After each crater creation, ask them to carefully remove their impactor, to make the crater clearly visible (in reality, impactors are completely — or almost completely — obliterated upon impact; any remains of the impactor are called "meteorites").

3. Now, taking turns, let the children experiment with creating craters! Have each group conduct an experiment by changing one variable to see how it affects impact crater size. Experiments could explore different impactor sizes, weights, distances dropped, or angles of impact. For example, one group could drop the same impactor from different heights (modeling different velocities of the incoming impactors), and another group could experiment by dropping different sized impactors from the same height. If the children want to experiment with angles of impact they will need to throw the impactors at the box; caution should be used to make sure no one is standing on the opposite side of the box in case the impactor misses. Invite the children to predict what will happen in their experiment. Have the children measure the width and depth of each impact crater formed in their experiment.


Have the children reflect on what they observed and the images from Mars and Earth. Invite them to record what they learned in their GSI Journals.

Invite the children to reflect on what they learned during all of their different investigations.

If things might be different, why not stop trying to understand other planets until we can go there? First, what's the fun of that? And second, it may be a long time until we get there! Planetary geology is about creating a picture of what it is like on a planet and how it has changed over time. Geologists use every piece of evidence they can — images from telescopes and spacecraft, information from rovers — to help them paint this picture. As they get more information, they alter the picture to fit the evidence. By studying what is available, scientists can help to identify the important questions that we should address in future robotic and human missions! And by understanding how planets change — and why — we can better understand how Earth has and will change. Learning about the history of water on Mars can tell us more about our own future.