Genesis

Sample Allocation Subcommittee

- Larry Nyquist, JSC, Emeritus, Chair
- Don Burnett, Caltech, Genesis Pl
- Kevin McKeegan, UCLA
- Mike Pellin, Argonne National Lab
- Dimitri Papanastassiou, JPL/Caltech
- Roger Wiens, Los Alamos National Lab
- Jeff Grossman, NASA Hg, Concurrence

Major Issues

- Replacement for subcommittee chair
- Desirability of expanding the investigator base
 - Publication rate is decreasing.
 - Remaining investigations more difficult, new approaches required?
- Roles clarification needed?
 - Do perceptions of the approval process agree with reality?
 - Does an investigation need first to be presented at a Genesis Science (Team) meeting?
- An opportunity exists to address these issues at the Sunday Genesis Science Meeting.
 - I will share some time "looking forward" with Don Burnett.

Genesis Science Meeting Sunday March 20, 2016 Woodlands Waterway Marriott Hotel - Waterways 6 Ballroom

9:00 – 9:30	Mass, not FIP?	Reisenfeld	
9:30 - 10:00	FIP Fractionation Theory	Laming	
10:00 - 10:20	Better Xe isotopes	Meshik	
10:20 - 10:50	SRC Lid foils	Nishiizumi	
10:50 - 11:00	Coffee Break		
11:00 - 11:30	Mg isotopes	Huss	
11:30 - 12:00	DLC and Mg isotopes	Jurewicz	
12:00 - 1:00	Lunch		
1:00 - 1:20	S Isotopes	Chakraborty	
1:20 - 1:40	H fluence; Regimes	Koeman-Shields	
1:40 - 2:00	Genesis Re Os Fe	Sharma	
2:00-2:20	Ni fluence Schmeling		
2:20 - 2:40	Br fluence	uence Pravditseva	
2:40 - 3:00	NaK fluence	K fluence Rieck, Jurewicz	
3:00 - 3:10	Coffee Break		
3:10-3:30	:10 – 3:30 Chili and Genesis		
3:30 - 3:50	30 – 3:50 Particle Removal		
3:50-4:10	Challenges from 60336	Goreva	
4:10-4:30	Looking forward	Burnett	
4:30 - 4:50	Sample Inventory Update	Allton, Allums	

GENESIS

Future Genesis Science Objectives

Twelve measurement objectives to complete the Science Goals of the Genesis Mission, three of which are given below.

Burnett and Jurewicz White Paper		
Specific Science Objectives	Measurement Objectives	Feasibility
Eliminate potential systematic errors in Genesis O isotopic composition used in essentially all present nebula models.	Mg isotopic composition.	Feasible; measurements in progress by several teams.
Measure average solar nebula composition for the rock-forming elements making up the terrestrial planets.	Abundances of elements with low first ionization potential.	Feasible for elements lighter than Ni (many require only better analytical standards)
Test for systematic differences in isotopic compositions between Sun and planetary materials.	Isotopic compositions of non- volatile elements heavier than Ar, specifically Fe.	Fe should be feasible; development required for other elements.

- Continued support by the Discovery Data Analysis Program is justified.
- ❖ The quality of the science return of the Genesis mission was undeniably affected by the crash in Utah; some worthy goals require the larger collection and pristine collection procedures envisioned for the mission.

SW Element Fractionation

Define the Fractionation Factor F:

$$F = (X/Mg)_{SW} / (X/Mg)_{photosphere}$$

Genesis

$$F = (X/O)_{SW} / (X/O)_{photosphere}$$

In more general use

FIP Plot

GENESIS

Example: Concentration and Isotopic Composition of S.

- Pls: M. Thiemens and S. Chakraborty
- S abundance Constrains Photosphere/Corona fractionation mechanisms
- Spacecraft measurements constrain the relative abundance of 34 S to δ^{34} S_{CDT} = -29±200‰.
- No spacecraft information is available on Δ^{33} S.
- From 3 cm² of Genesis FZ-Si, the PIs estimate uncertainty limits of ~±3.7% for $\delta^{34}S_{CDT}$ and ~± 1.2% for $\Delta^{33}S$.

Genesis sample allocation procedures

- A sample allocation request/proposal is submitted by the PI in a standardized format available from the Astromaterials Curator's website.
- **After requests are received by the Genesis**Curator, they are e-mailed to the Subcommittee.
- Requests are generally initially discussed by email, and in complicated cases, a telecon will be arranged among the subcommitte members.
 - >Attempt to keep telecons infrequent by doing background research for the e-mail discussions.

Sulfur Isotopes: Meteorites

>Sulfur is only the only element besides oxygen which shows anomalies at the bulk level in meteorites.

➤Like Oxygen, Sulfur is photochemically processed

Specific measurement objectives (prioritized)—Prelaunch

- 1) O isotopes
- 2) N isotopes in bulk solar wind
- 3) Noble gas elements and isotopes
- 4) Noble gas elements and isotopes; regimes
- 5) C isotopes
- 6) C isotopes in different solar wind regimes
- 7) Mg,Ca,Ti,Cr,Ba isotopes
- 8) Key FIP elements (Na, Mg, Fe, Si, Ca, Cr, Ni, Al, C, N, O, etc)
- 9) Mass 80-100 and 120-140 elemental abundance patterns
- 10) Survey of solar-terrestrial isotopic differences
- 11) Noble gas elements and isotopes for higher energy solar particles
- 12) Li/Be/B elemental and isotopic abundances
- 13) Radioactive nuclei in the solar wind
- 14) F abundance
- 15) Pt-group elemental abundances
- 16) Key s-process heavy elements
- 17) Heavy-light element comparisons
- 18) Solar rare earth elements abundance pattern
- 19) Comparison of solar and chondritic elemental abundances

Sulfur Isotopes: Chondrites

