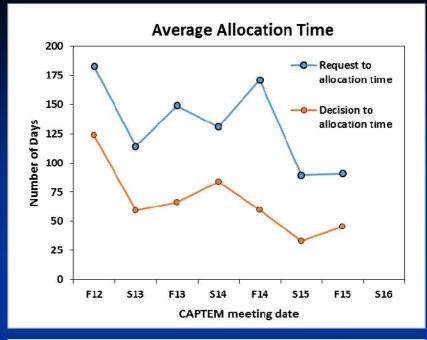
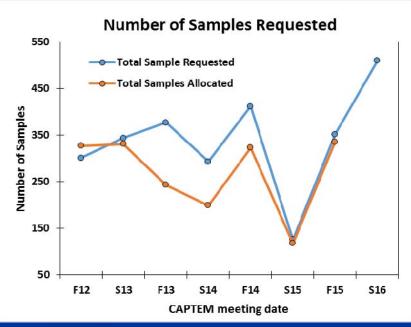

Apollo Laboratory Report

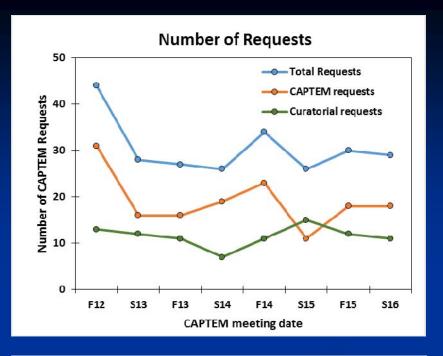
Spring 2016 CAPTEM meeting
Ryan Zeigler
Apollo Sample Curator

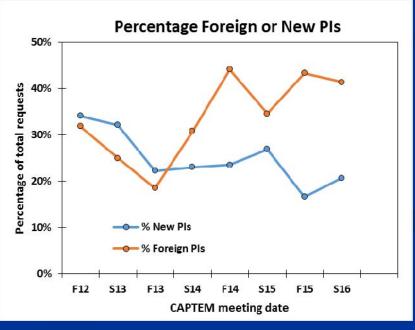
Allocations


- Since 10/1/2015, we have allocated the following:
 - 448 Apollo Samples sent to PIs
 - o 182 Thin Sections
 - o 138 Samples (chips, fines, etc.)
 - o 128 Samples studied internally*
 - 66 additional samples complete, waiting to be mailed >LPSC
- *Analyses for CAPTEM approved studies done at JSC now counted as allocations.
- PI visits 4 visits, 13 days
 - Gattacecca (6); Weiss (4); Hirschmann (2); Schmitt (1)
- Thin Section Lab activity
 - 10 TS made; 131 TS cleaned; 14 TS repaired; 1 TS rounded



Sample Requests


- All Fall 2015 CAPTEM requests (30) are complete
 - Two Spring 2015 requests are still awaiting PI action.
 - 100% sample allocation; average allocation time was 45 (91) days
- All Spring 2016 curatorial requests not needing PI action (9) are complete.
- 18 sample requests considered by the LSS for Spring 2016.
 - 6 passed, 9 passed with modifications; 3 were denied
 - 535 samples were requested,
 ~336 were approved.



Sample Requests

- All Fall 2015 CAPTEM requests (30) are complete
 - Two Spring 2015 requests are still awaiting PI action.
 - 100% sample allocation; average allocation time was 45 (91) days
- All Spring 2016 curatorial requests not needing PI action (9) are complete.
- 18 sample requests considered by the LSS for Spring 2016.
 - 6 passed, 9 passed with modifications; 3 were denied
 - 535 samples were requested,
 ~336 were approved.

Returned Samples

- Since 10/01/2015, over 1300
 Apollo samples have been returned by PIs.
- Since 10/01/2015, we have processed 559 samples back in to the collection.
- Overall, we have 3500 samples to process in, 2000 of which are not checked in yet
 - Includes several large return sample collections from: Warren (350), Papanastassiou (400), Pillinger (100), Korotev (500), Clayton (100), and Walker (600).

- Lunar Thin Section Sets +
 Education Disk Program
 - 18 TS sets; 194 disks to K-12
- Lunar lab has hosted 68 tours for 384 people (88 inside lab)
 - Students/Interns/Teachers
 - Astronauts/Cosmonauts;
 - NASA HQ (CFO, CIO, OCC);
 - Captains of Industry
 - Congressional aides (Babin/Olson)
- Media Events
 - 3 film crews, including ABC
 - 2 radio/Skype interviews
 - Dr. Jill Biden (almost)
 - Ars Technica Article
- Suspected Lunar Samples (aka Dream Crushing) – 5 times.

- Lunar Thin Section Sets +
 Education Disk Program
 - 18 TS sets; 194 disks to K-12
- Lunar lab has hosted 68 tours for 384 people (88 inside lab)
 - Students/Interns/Teachers
 - Astronauts/Cosmonauts;
 - NASA HQ (CFO, CIO, OCC);
 - Captains of Industry
 - Congressional aides (Babin/Olson)
- Media Events
 - 3 film crews, including ABC
 - 2 radio/Skype interviews
 - Dr. Jill Biden (almost)
 - Ars Technica Article
- Suspected Lunar Samples (aka Dream Crushing) – 5 times.

- Lunar Thin Section Sets +
 Education Disk Program
 - 18 TS sets; 194 disks to K-12
- Lunar lab has hosted 68 tours for 384 people (88 inside lab)
 - Students/Interns/Teachers
 - Astronauts/Cosmonauts;
 - NASA HQ (CFO, CIO, OCC);
 - Captains of Industry
 - Congressional aides (Babin/Olson)
- Media Events
 - 3 film crews, including ABC
 - 2 radio/Skype interviews
 - Dr. Jill Biden (almost)
 - Ars Technica Article
- Suspected Lunar Samples (aka Dream Crushing) – 5 times.

- Lunar Thin Section Sets +
 Education Disk Program
 - 18 TS sets; 194 disks to K-12
- Lunar lab has hosted 68 tours for 384 people (88 inside lab)
 - Students/Interns/Teachers
 - Astronauts/Cosmonauts;
 - NASA HQ (CFO, CIO, OCC);
 - Captains of Industry
 - Congressional aides (Babin/Olson)
- Media Events
 - 3 film crews, including ABC
 - 2 radio/Skype interviews
 - Dr. Jill Biden (almost)
 - Ars Technica Article
- Suspected Lunar Samples (aka Dream Crushing) – 5 times.

- Lunar Thin Section Sets +
 Education Disk Program
 - 18 TS sets; 194 disks to K-12
- Lunar lab has hosted 68 tours for 384 people (88 inside lab)
 - Students/Interns/Teachers
 - Astronauts/Cosmonauts;
 - NASA HQ (CFO, CIO, OCC);
 - Captains of Industry
 - Congressional aides (Babin/Olson)
- Media Events
 - 3 film crews, including ABC
 - 2 radio/Skype interviews
 - Dr. Jill Biden (almost)
 - Ars Technica Article
- Suspected Lunar Samples (aka Dream Crushing) – 5 times.

Inventories and Loan Agreements

- All 122 lunar PIs are current on their loan agreements.
- The 2015 Lunar Sample Inventory was sent out to 98 external (to JSC) lunar PIs.
 - 100% compliance was (eventually) achieved.
- An additional 13 external PIs were exempt; either too new or too old (they chose to return samples instead).
- The 11 JSC lunar sample PIs had to do their inventory with JSC security (lots of fun).
- This summer will be the semi-annual JSC Curation lunar sample location inventory with JSC security.

Thin Section Reorg

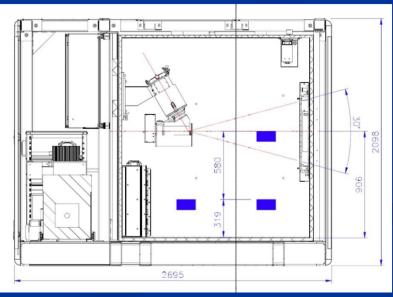
- Currently lunar thin sections are stored in the lunar vault in a variety of locations/containers.
 - Ideally all would be centralized.
- We recently built 20 new thin section cases, giving us capacity for 18,000 sections, plus >3,000 more in SCC
- There are currently ~15,500 flagged sections; >3,000 are in SCC
 - Great, this all fits no problem!
- Sadly, sections that predate our digital data base are not flagged
 - Represent another \sim 8,000 thin sections
 - The reason for the \sim is that many samples are polybag multiples (\sim 4000 sections).
- Goal is to have everything rearranged by the Fall CAPTEM meeting
 - Photographs by next Spring

Thin Section Reorg

- Currently lunar thin sections are stored in the lunar vault in a variety of locations/containers.
 - Ideally all would be centralized.
- We recently built 20 new thin section cases, giving us capacity for 18,000 sections, plus >3,000 more in SCC
- There are currently ~15,500 flagged sections; >3,000 are in SCC
 - Great, this all fits no problem!
- Sadly, sections that predate our digital data base are not flagged
 - Represent another \sim 8,000 thin sections
 - The reason for the \sim is that many samples are polybag multiples (\sim 4000 sections).
- Goal is to have everything rearranged by the Fall CAPTEM meeting
 - Photographs by next Spring

Apollo Public Websites

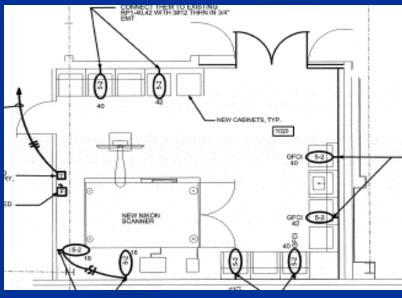
- Complete migration of Lunar Sample and Photo Catalog to a non-flash dependent website
 - Revamped Search Interface More intuitive
 - List of available thin sections are included
 - Easier to limit photo searches, rotate images, report problems
 - Much Faster!
- Data, Photos, and references for the <u>cores/drive tubes</u> has been added to the website.
- Many <u>new catalogs</u> are online (or coming soon):
 - Catalog of Apollo Lunar Surface Geological Sampling Tools and Containers (JSC-23454 March 1989 – Allton)
 - Apollo 12 Lunar Sample Information Catalog (NASA TR R-353–Dec 1970 Warner)
 - Table of Sample Depths for Apollo 15, 16, and 17 Drill Cores (Pub. 56 March 1981 Allton, Waltz, Dardano)
 - Drive Tubes 74002/74001 (January 1978 Nagle)
 - Description of Core Samples Returned by Apollo 12 (NASA TM-X-58066 Nov 1971 Lindsey, Heiken, and Fryxell)
- We had all Apollo Sample History forms (F-75s) scanned
 - We now have 45,953 PDF files (90.4 GB) available internally


MoonDB

- MoonDB is a quality-controlled data system to preserve, digitize, and curate lunar geochemical and petrological data and associated sample metadata and analytical metadata.
 - Project lead by Kerstin Lehnert of IEDA (at Lamont Doherty); funded through NASA's PDART program.
 - JSC curation is providing sample numbers, sample collection/processing metadata, and sample lithologies.
- Data from the first ~400 references has been ingested, many more to come (using lunar compendia as ref. source)
- Also working with <u>lunar PIs</u> to get unpublished (but vetted) data to be included as well.
- Data interface is under construction; PetDB is the template
- There will be a workshop and poster during LPSC:
 - Sunday meeting 11:00-12:30, in The Woodlands Room
 - Yue Cai et al., Abstract #2738, Thursday evening poster session

Micro-CT Lab

- We purchased a Nikon XTH 320 micro-CT system.
 - 4 interchangeable x-ray sources (180 kV, 225 kV, 225 kV rotating, 320 kV)
 - A 2000 pixel, 16-bit detector
 - Ability to handle large samples (100 kg, 300 mm diameter)
 - Bit of a monster (8000 kg, 9' x 7' x 6')
- The large lunar thin section lab will be renovated to house it.
- Timeline of the instrument
 - Demolition March-April 2016
 - New construction April-May 2016
 - Casework installed June 2016
 - Hire a technician July/August 2016
 - Instrument arrival August 2016
 - System acceptance September 2016
 - Data produced Fall CAPTEM



Micro-CT Lab

- We purchased a Nikon XTH 320 micro-CT system.
 - 4 interchangeable x-ray sources (180 kV, 225 kV, 225 kV rotating, 320 kV)
 - A 2000 pixel, 16-bit detector
 - Ability to handle large samples (100 kg, 300 mm diameter)
 - Bit of a monster (8000 kg, 9' x 7' x 6')
- The large lunar thin section lab will be renovated to house it.
- Timeline of the instrument
 - Demolition March-April 2016
 - New construction April-May 2016
 - Casework installed June 2016
 - Hire a technician July/August 2016
 - Instrument arrival August 2016
 - System acceptance September 2016
 - Data produced Fall CAPTEM

Summary

Priorities for the next 6 months

- 1. Complete all new allocations (336 samples)
- 2. Clear two "old" allocations (need PI feedback)
- 3. Reorganize the thin sections into the new cases.
- 4. Bring the new micro-CT laboratory online and begin to produce data.
- 5. The JSC bi-annual lunar sample location inventory
- 6. Make inroads into processing return samples, especially large return collections
- 7. Figure out how to fill time after May...