An Introduction to Lunar Geology

Vicram Rajagopalan Dung Bui Wesley Eng Onur Erdemir Carolyn Ortega

- History of the moon
- Capture Hypothesis
- Double Planet Hypothesis
- Fission Hypothesis
- Giant Impact Hypothesis
- Lunar Highlands

- Lunar Maria
- Rilles
- Cones & Domes
- Impact Cratering
- Conclusions
 - Image 1
 - Image 2
 - Image 3

Table of Contents

The History of the Moon

The History of the Moon

Acquired a fully formed moon

- Possible, but....
 - Statistically improbable
 - Earth and moon have similar Oxygen isotopes

The Capture Hypothesis

- Earth and moon formed simultaneously
- Strengths
 - Explains the similar oxygen isotope composition
- Flaws!
 - Does not explain the moon's small core
 - Difference in the amount of volatiles and non volatiles
 - Earth's rotation...Why?
 - The orbiting ring of debris orbited

The Double Planet Hypothesis

- Moon formed from rapidly spinning Earth
- Pros:
 - Explains The moon's small metallic core
 - Accounts for the similar oxygen isotope composition
- Cons:
 - 2.5 hour rotation of the earth required
 - Bodies have different chemical compositions

Fun Fact: Earlier scientists believed the Pacific Ocean was "a birth scar" left by the separation of the moon

The Fission Hypothesis

- · Formed from the debris of a large-scale impact
- · Explains:
 - The ratio of volatiles to monvolatile
 - The identical oxygen isotopic composition
 - The angular momentum and angle of the Earth's rotation
- · Natural part of planetary formation

The Giant Impact Hypothesis

- Formed from magma sea 4.4 b.y.a
- Predate the Maria by 800 m.y
- The elevated and more rugged regions
- Cover 80% of the visible surface
- Heavily cratered
- Feldspar rich and contain low density rocks
- High albedo

The Lunar Highlands

- Smooth, dark flood-plains
- Cover 16% of the moon's surface
- Less impact cratering than the highlands
- Basaltic composition
- Bear resemblance to Earth's volcanic terrains
- Home numerous morphologies

The Lunar Maria

- Created by volcanic eruptions3.5 b.y.a
- Partial melting of the crust formed magma
- Heat produced by radioactive materials
- Occurred 60 to 500 meters below the surface
- Magma pooled in basins

Formation of the Lunar Maria

- Lava channels/collapsed lava tubes.
- Often connected/aligned with endogenic craters.
- Three Types of Rilles
 - Arcuate rilles
 - Sinuous rilles
 - Straight rilles

Rilles

Domes

- Large shallow land forms
- Topped by smooth ringed craters
- Low profiles suggest fluid volcanism
- Some have summit craters or fissures.
- Heights vary from 100 to 250 m
- Diameters range from 2.5 to 24 km

Cones

- Steep, rough surfaced features
- Cinder cones formed from lava bombs
- Volume of each is smaller than the total Basalt erupted from it
- Often associated with Rilles
- Less than 100 meters high
- Diameters range from 2-3 km
- They have a low albedo.

Cones & Domes

- Five types of craters
 - Simple
 - Complex
 - Central peak basins
 - Peak ring basins
 - Multi ring basins

Impact Cratering

Three Phases to the Impact Process

- 1. The compression phase 2. The excavation phase

 - 3. Modification phase

Impact Cratering

Maria

Straight Rilles

Cones

Domes

Conclusion: Image 1

Maria

Sinuous Rilles

Cones

Domes

Simple Craters

Conclusion: Image 2

Maria

Highlands

Sinuous Rilles

Simple Craters # Complex Craters # Peak Ring Basins

Conclusion: Image 3

- Cohen ,Barbara A. "Lunar Meteorites and the Lunar Cataclysm", *Planetary Science Research Discoveries*, 2001, http://www.psrd.hawaii.edu/Jan01/lunarCataclysm.html.
- "Impact Cratering", Lunar and Planetary Institute, 1 Oct. 2012 http://www.lpi.usra.edu/nlsi/education/hsResearch/resources/ImpactCratering.pdf
- "Lunar Volcanism", Lunar and Planetary Institute, 1 Oct. 2012, http://www.lpi.usra.edu/nlsi/education/hsResearch/resources/LunarVolcanism.pdf
- Mackenzie, Dana. *The big splat, or, How our moon came to be*. Hoboken, N.J.: John Wiley & Sons, 2003. Print.
- Norman, Marc. "The Oldest Moon Rocks", *Planetary Science Research Discoveries*, 2004, http://www.psrd.hawaii.edu/April04/lunarAnorthosites.html.
- Taylor, G. Jeffrey. "Origin of the Earth and Moon", *Planetary Science Research Discoveries*, 1998, http://www.psrd.hawaii.edu/Dec98/OriginEarthMoon.html.
- Taylor, Jeffrey. "The Scientific Legacy of Apollo", *Scientific American*, volume 271, n.1, 1994, pages 40-47.
- Taylor, G. Jeffrey. "Time to Solidify an Ocean of Magma", *Planetary Science Research Discoveries*, 2009, http://www.psrd.hawaii.edu/Mar09/magmaOceanSolidification.html.
- Taylor, G. Jeffrey. "Wandering Gas Giants and Lunar Bombardment", *Planetary Science Research Discoveries*, 2006 http://www.psrd.hawaii.edu/Aug06/cataclysmDynamics.html.
- Wilhelms, Don. "Structure", *The Geologic History of the Moon, USGS Professional Paper 1348*, , 1987, pg. 107, http://ser.sese.asu.edu/GHM/ghm_06txt.pdf.
- Wilhelms, Don. "Mare Materials", *The Geologic History of the Moon, USGS Professional Paper 1348*, 1987, pgs. 86-93 and 102-103http://ser.sese.asu.edu/GHM/ghm_05txt.pdf.

Works Cited