Lunar Geology of the Apollo Seventeen Landing Site

Chenango Forks High School
Dallas Moffitt
Jackson Haskell
Taylor Powers
Benjamin Daniels
Rebecca Ollerenshaw
Lunar Maria

- The Lunar Maria are smooth level areas that were once deep basins. Today maria cover about 16% of the lunar surface area.
- At one point basins like Serenitatis were filled in basaltic lava flows, and this is what gives maria their distinctive low albedo.
- Since they’re formed by volcanic activity, outlying flows, ash beds or any combination of these can be found in or around the mare.
Mare Serenitatis

- Mare Serenitatis or the Sea of Serenity is 707km total in size.
- And eventually connects with Mare Tranquillitatis to the south.
- The mare material was made during the Upper Imbrian epoch, and its basin was most likely caused by a massive impactor.
Lunar Plains

- Plains are flat and low.
- Intermediate albedo.
- Underlying features are completely covered and there is no visible evidence of volcanism.
Lunar Plains Con’t

• Similar to Mare materials but degraded and with a higher albedo.

• This possibly indicates that they are older lava flows.

• The lighter blue areas indicate undisturbed plains.

• While the Darker Blue area indicate plains that have been disturbed by the crater Chacornac.
Local Terra Types

• **Dome Terra** - A volcanic dome whose texture should reflect its composition.

• **Regular Terra** - Smooth rolling hills that inter-mingle with plains materials.

• **Rugged Terra** - Ranges from large mountains to rough hills, and are made of brecciated ejecta blankets of differing ages.

• **Hilly Terra** - Round smooth hills and hummocks, found mostly around basins and are usually closely clustered and has a similar make up and similarly built up over time.
Craters

- **Simple:**
 - Over time the ejecta and rays will become less discernable from and slowly merge with the surrounding mare. Also, its raised rim will become smoother.

- **Complex:**
 - These differ from simple craters in that they have a central peak. Therefore the aging/erosion process are very similar, again differing only in the peak, that will also erode and become difficult to identify.

- **Primary:**
 - The primary crater is the parent crater, directly formed by an impact with a celestial object.

- **Secondary, tertiary, etc:**
 - Are formed by objects that were thrown back up and out of the crater by the force of the original impact and aloud to form another crater.
Crater Examples

The yellow box surrounds Le Monnier. This crater is now partially hidden by the intrusion of mare material caused by a volcanic eruption that filled the basin as well. (Diameter=61km)

The red box surrounds Romer M, a secondary crater of Romer. Also, this is an example of superposition in which an impact interrupts the rim of a crater. (Diameter=10km)

The blue box surrounds the outer rim of the ejecta of Chacornac. This shows a relatively new impact. (Diameter = 51km)

Lastly the **Purple Circle** highlights a small crater chain. Crater chains are formed when an impactor breaks up before the actual impact.
Lunar Features

- **Grabens** – formed by two parallel normal faults that allow the center area to drop down forming a valley.
- **Scarp** – A type of fault. It is the displacement of land alongside a fault.
- **Mare Ridge** – The raised edges of a mare impact basin.
- **Trough** – A depression that is characterized by its shallow ridges.
- **Lineament** – A linear expression used to characterize a fault lined valley.
- **Depression** – A decrease in elevation from the surroundings.
- **Dark Crater Area** – Areas with dark haloed craters.
- **Fault** – A fracture in the surface.

