Program Description

NASA and its partners in academia, industry, and the international community are examining options for a new era of robotic and human exploration using the Orion vehicle and other new assets that are being developed for missions beyond low-Earth orbit. A new program, called Artemis, is scheduled to land two astronauts near the lunar south pole in 2025, followed by a series of crew landings that broaden our exploration of the lunar surface. These and other efforts are contributing to the international community’s Global Exploration Roadmap.
This summer, students will be involved in activities that support Artemis missions to the Moon that utilize the Orion crew vehicle, the Deep Space Gateway, the Human Landing System, and robotic assets on the lunar surface. It is a unique opportunity to integrate scientific input with exploration activities in a way that mission architects and spacecraft engineers can use. Activities may involve assessments of landing sites and traverse plans for multiple destinations that are responsive to NASA objectives.
The Exploration Science Summer Intern Program builds on the success of the Lunar Exploration Summer Intern Program that was designed to evaluate possible landing sites on the Moon for robotic and human exploration missions. Over a five year period (2008–2012), teams of students worked with Lunar and Planetary Institute (LPI) science staff and their collaborators to produce A Global Lunar Landing Site Study to Provide the Scientific Context for Exploration of the Moon. Student teams also produced a series of influential journal articles (O’Sullivan et al. 2011; Flahaut et al. 2012; Lemelin et al. 2014; Potts et al. 2015; Steenstra et al. 2016; Allender et al. 2019; Bickel et al. 2019; Sargeant et al., 2020; Bickel and Kring 2020; Gawronska et al. 2020; Halim et al. 2021; Czaplinski et al. 2021; Kumari et al. 2022). The program for 2023 is designed to have the same impact on future exploration activities.
This program is open to graduate students in geology, planetary science, planetary astronomy, and related topics. The 10-week program runs from May 30, 2023, through August 4, 2023. Selected interns will receive a $6,300 stipend to cover the costs associated with being in Houston for the duration of the program. Additionally, U.S. citizens will receive up to $1,000 in travel expense reimbursement and foreign nationals will receive up to $1,500 in travel expense reimbursement.
We are currently planning to host the program in Houston. However, if pandemic conditions worsen and restrict on-site activities, a virtual edition of the program will persevere.
The LPI is adjacent to NASA's Johnson Space Center. The Johnson Space Center is home to the human exploration program and the integrated robotic and human systems that are being designed to push exploration beyond low-Earth orbit.
The Exploration Science Summer Intern Program is supported by funding from the LPI and the NASA Solar System Exploration Research Virtual Institute at NASA Ames Research Center.
Publications and Products
Publications
F. McDonald, D. Martin, N. Curran, and A. Calzada-Diaz (2015) Exploring the Moon on Earth. Astronomy and Geophysics 56(6), 6.31-6.32, doi:10.1093/astrogeo/atv199.
C. S. Venturino, D. J. P. Martin, F. E. McDonald, S. Paisarnsombat, E. S. Steenstra, S. O’Hara, A. Calzada-Diaz, S. Bottoms, M. K. Leader, K. K. Klaus, T. K. P. Gregg, and D. A. Kring (2016) Lunar Pyroclastic Soil Mechanics and Trafficability in the Schrödinger Basin, Lunar and Planetary Science XLVII, Abstract #1676.
F. E. McDonald, D. J. P. Martin, E. S. Steenstra, S. Paisarnsombat, C. S. Venturino, S. O’Hara, A. Calzada-Diaz, S. Bottoms, M. K. Leader, K. K. Klaus, D. Hurwitz-Needham, and D. A. Kring (2016) A Long Duration Human-Assisted Robotic Sample Return Mission to the Schrödinger Basin Part 1: Traversing the Basin Center, Lunar and Planetary Science XLVII, Abstract #1464.
D. J. P. Martin, F. E. McDonald, E. S. Steenstra, S. Paisarnsombat, C. S. Venturino, S. O'Hara, A. Calzada-Diaz, M. K. Leader, S. Bottoms, K. K. Klaus, D. Hurwitz-Needham, and D. A. Kring (2016) A Long Duration Human-Assisted Robotic Sample Return Mission to the Schrödinger Basin Part 2: Traversing Towards the Basin Wall, Lunar and Planetary Science XLVII, Abstract #1468.
E. S. Steenstra, D. J. P. Martin, F. E. McDonald, S. Paisarnsombat, C. Venturino, S. O’Hara, A. Calzada-Diaz, S. Bottoms, M. K. Leader, K. K. Klaus, W. van Westrenen, D. H. Needham, and D. A. Kring (2016) Analyses of Robotic Traverses and Sample Sites in the Schrödinger basin for the HERACLES Human-Assisted Sample Return Mission Concept, J. Advances in Space Research 58, pp. 1050–1065.
J. J. Ende, E .J. Allender, N. V. Almeida, J. Cook, O. Kamps, S. Mazrouei, C. Orgel, T. J. Slezak, A. J. Soini, and D. A. Kring (2017) Landing site assessment for phase of EDSH-Enabled Lunar Missions being examined as an ISECG-GER mission scenario. Lunar and Planetary Science XLVIII, Abstract #1880.
O. M. Kamps, E. J. Allender, N. V. Almeida, J. Cook, J. J. Ende, S. Mazrouei, C. Orgel, T. Slezak, A. J. Soini, and D. A. Kring (2017) Exploration of South Polar Region of the Moon: Tele-Operated Traverses. Lunar and Planetary Science XLVIII, Abstract #1909.
E. J. Allender, C. Orgel, N. V. Almeida, J. Cook, J. J. Ende, O. Kamps, S. Mazrouei, T. J. Slezak, A-J. Soini, and D. A. Kring (2019) Traverses for the ISECG-GER design reference mission for humans on the lunar surface, Advances in Space Research 63, 692-727.
V. T. Bickel, C. I. Honniball, S. N. Martinez, A. Rogaski, H. M. Sargeant, S. K. Bell, E. C. Czaplinski, B. E. Farrant, E. M. Harrington, G. D. Tolometti, and D. A. Kring (2019) Analysis of Lunar Boulder Tracks: Implications for Rover Mobility on Pyroclastic Deposits, Lunar and Planetary Science L, Abstract #1587.
V. T. Bickel, C. Lanaras, A. Manconi , S. Loew, and U. Mall (2019) Lunar Rockfall Detection And Mapping Using Deep Neural Networks, Lunar and Planetary Science L, Abstract #1595.
B. E. Farrant, S. K. Bell, E. C. Czaplinski, E. M. Harrington, G. D. Tolometti, V. T. Bickel, C. I. Honniball, S. N. Martinez, A. Rogaski, H. M. Sargeant, and D. A. Kring (2019) Geologic Map and Potential Rover Traverses for Human-Assisted Sample Return Missions to the Schrödinger Basin, Lunar Farside, Lunar and Planetary Science L, Abstract #1790.
H. M. Sargeant, V. T. Bickel, C. I. Honniball, S. N. Martinez, A. Rogaski, S. K. Bell, E. C. Czaplinski, B. E. Farrant, E. M. Harrington, G. D. Tolometti, and D. A. Kring (2019) Determining the Bearing Capacity of Permanently Shadowed Regions of the Moon Using Boulder Tracks, Lunar and Planetary Science L, Abstract #1792.
H. M. Sargeant, V. T. Bickel, C. I. Honniball, S. N. Martinez, A. Rogaski, S. K. Bell, E. C. Czaplinski, B. E. Farrant, E. M. Harrington, G. D. Tolometti, and D. A. Kring (2019) Determining Trafficability of Pyroclastic Deposits and Permanently Shaded Regions of the Moon Using Boulder Tracks, Lunar ISRU 2019, Abstract #5019.
V. T. Bickel, C. I. Honniball, S. N. Martinez, A. Rogaski, H. M. Sargeant, S. K. Bell, E. C. Czaplinski, B. E. Farrant, E. M. Harrington, G. D. Tolometti, and D. A. Kring (2019) Lunar South Pole Boulders and Boulder Tracks: Implications for Crew and Rover Traverses, NASA Exploration Science Forum.
V. T. Bickel, C. I. Honniball, S. N. Martinez, A. Rogaski, H. M. Sargeant, S. K. Bell, E. C. Czaplinski, B. E. Farrant, E. M. Harrington, G. D. Tolometti, and D. A. Kring (2019) Analysis of lunar boulder tracks: Implications for trafficability of pyroclastic deposits, J. Geophysical Research - Planets 124, 1296-1314.
Harish, Venkata Satya Kumar Animireddi, Natasha Barrett, Sarah Boazman, Aleksandra Gawronska, Cosette Gilmour, Samuel Halim, Kathryn McCanaan, Jahnavi Shah, and David Kring (2019) Slope Map of the Moon’s South Pole (85°S to Pole). Map 1, Map 2, and Map 3.
Harish, Venkata Satya Kumar Animireddi, Natasha Barrett, Sarah Boazman, Aleksandra Gawronska, Cosette Gilmour, Samuel Halim, Kathryn McCanaan, Jahnavi Shah, and David Kring (2019) Slope Map between Shackleton and de Gerlache Craters, Lunar South Pole. Map 1, Map 2, and Map 3.
Kathryn McCanaan, Venkata Satya Kumar Animireddi, Natasha Barrett, Sarah Boazman, Aleksandra Gawronska, Cosette Gilmour, Samuel Halim, Harish, Jahnavi Shah, and David Kring (2019) Topographic Contour Map of the Moon’s South Pole Ridge.
Kathryn McCanaan, Venkata Satya Kumar Animireddi, Natasha Barrett, Sarah Boazman, Aleksandra Gawronska, Cosette Gilmour, Samuel Halim, Harish, Jahnavi Shah, and David Kring (2019) Slope Map of the Moon’s South Pole Ridge.
E. J. Allender, C. Orgel, N. V. Almeida, J. Cook, J. J. Ende, O. Kamps, S. Mazrouei, T. J. Slezak, A.-J. Soini, and D. A. Kring (2020) The Shaded Relief Geological Map of the South Polar Region of the Moon.
S. H. Halim, N. Barrett, S. J. Boazman, A. J. Gawronska, C. M. Gilmour, Harish, K. McCanaan, A. V. Satyakumar, J. Shah, and D. A. Kring (2021) Numerical modeling of the formation of Shackleton crater at the lunar south pole. Icarus, 354, ISSN 0019-1035, https://doi.org/10.1016/j.icarus.2020.113992.
E. C. Czaplinski, E. M. Harrington, S. K. Bell, G. D. Tolometti, B. E. Farrant, V. T. Bickel, C. I. Honniball, S. N. Martinez, A. Rogaski, H. M. Sargeant, and D. A. Kring (2021) Human-assisted sample return mission at the Schrödinger basin, lunar farside using a new geologic map and rover traverses. Planetary Science Journal, 2:51, 23, https://doi.org/10.3847/PSJ/abdb34.
To see publications produced by the companion Lunar Science Summer Intern Program, click here.