In compliance with NASA Contract NASA 9-5829 requirements, this document provides a Qualification Status List (QSL) for use as part of the ALSEP Fuel Cask and Structure Assembly Flight 1 Acceptance Data Package (ADP). As of the date of publication, the information contained herein reflects the status of qualification following the system level thermal/vacuum test conducted at the General Electric Missile and Space Division, Valley Forge, Pennsylvania. System Qualification level shock and vibration test are yet to be conducted.

The following items represent Qualification and Flight 1 model differences in so far as Thermal Vacuum Qualification Tests are concerned:

1. Inconel high temp helicoil inserts which were subjected to T/V test were replaced with CRES Helical Coil inserts. These inserts are considered to be qualified for the T/V environment by similarity of design. The CRES inserts will be incorporated prior to Design Level Shock and Vibration Testing.

2. The Lanyard Assembly, part no. 2338128, was redesigned to replace the lanyard hook with a bolt and nut through a clevis link. This change provides a positive attachment of the lanyard assembly and does not impact T/V qualification. The change will be incorporated prior to Qualification Shock and Vibration Tests.

3. The Baroswitch #2203114 and thermal systems sensory #5001-32 assembly was not a part of the T/V qualification model and will undergo T/V qualification at BxA as a subsystem. The switch and sensor assembly will be incorporated into the Fuel Cask and Structure Assembly prior to Qual Level Shock and Vibration Tests.

4. The Spline Retainer Bracket was incorporated subsequent to the T/V qualification test; however, a T/V environment would have little or no effect on its function and does not impact the T/V qualification. The spline retainer will be incorporated prior to Qual Level Shock and Vibration Testing.

Prepared by: P. McGinnis

Approved by: S. J. Ellison, Manager
ALSEP Reliability
ACA Flight Level Sine Wave Vibration

Figure 1

5 - 100 Hz
Scan Rate - 3 oct/minute
Tolerance ± 10%

NOTE: A slight overtest may be experienced at the ACA resonance frequency (40 Hz) during sinusoidal "Y" axis vibration, due to the characteristic of the vibration system servo loop's inability to maintain the input at the ACA resonance.
Test Time = 2 1/2 minutes

Tolerance = ± 3 dB

Grms = 8.6 ± 10%
ACA Qual Level Sine Wave Vibration
Launch and Boost Phase
Figure 3

5 - 100 - 5 Hz
Scan Rate - 3 oct/minute
Tolerance - + 10%

NOTE: A slight overtest may be experienced at the ACA resonance frequency (40Hz) during sinusoidal "Y" axis vibration, due to the characteristic of the vibration system servo loop's inability to maintain the input at the ACA resonance.
ACA Qual Level Random
Vibration-Launch and Boost
Phase
Figure 4

Test time = 2 1/2 minutes/axis
Tolerance = ± 3 db
Grms = 11.1 ± 10%
ACA Qual Level Sine Wave Vibration
Lunar Descent Phase
Figure 5

5-100-5 Hz
Scan Rate - 1 oct/minute
Tolerance + 10%

NOTE: A slight overtest may be experienced at the ACA resonance Frequency (40 Hz) during sinusoidal "Y" axis vibration, due to the characteristic of the vibration system servo loop's inability to maintain the input at the ACA resonance.
ACA Qual Level Random
Vibration-Lunar Descent Phase
Figure 6

Test time = 12 1/2 minutes/axis

Tolerance = +3 db
FIGURE 7

HALF SINE SHOCK PULSE CONFIGURATION AND ITS TOLERANCE LIMITS
(+X, +Y, +Z DIRECTION)
Qualification Status List - ALSEP Program

<table>
<thead>
<tr>
<th>Item Nomenclature</th>
<th>Environment and/or Parameter</th>
<th>Stress Level</th>
<th>Verification of Stress Level Capability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Requirement</td>
<td>Capability</td>
</tr>
<tr>
<td>Fuel Cask</td>
<td>ENVIRONMENTAL</td>
<td>Temperature:</td>
<td>Operating: -450°F to -270°F</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non-Operating: -450°F to -270°F</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Earth</td>
<td>General Electric</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Moon</td>
<td>Missile & Space Div.</td>
</tr>
<tr>
<td></td>
<td>Pressure</td>
<td>Sea Level to 1 x 10^-5 TORR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Humidity</td>
<td>Operating: 15% to 100%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vibration</td>
<td>Operating: Vibration Levels as defined in Figures 1 thru 6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non-Operating: N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Launch & Flight: N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lunar Landing: N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acceleration</td>
<td>Operating: N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non-Operating: N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shock</td>
<td>Operating: Shock Level as defined in Figure 7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non-Operating: N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Salt Spray</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sand & Dust</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fungus</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acoustical Noise</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rain</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Radiation</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Explosion Proof</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EXPLOSIVE</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EXPLOSIVE</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

Verification of Stress Level Capability
- **Agent:** General Electric
- **Location:** Valley Forge, Pa.
- **Document Reference:** SI 249205
- **Date:** 2/4/69
- **Remarks:** Successfully Tested

Environment and/or Parameter
- **Operating:** As Run T/V TP
- **Non-Operating:** As Run T/V TP

Stress Level
- Sea Level to 1 x 10^-5 TORR
- 15% to 100%

Remarks
- Successfully tested to 1 x 10^-5 TORR