

A computer simulation was generated to determine if one or more seven (7) bit code groups, other than those codes presently in use on ALSEP, are available for addressing additional ALSEP systems.

Two address code groups were found to be compatible with the eight existing ALSEP addresses during error free operation. Recommended addresses for 5A is (01100l0) and for 5 B is (1100100).

The effect of a single bit error in transmission was also investigated using computer simulation techniques; first, for all code groups currently in use, then for the currently used codes plus the recommended codes.

The results indicate that another ALSEP can respond and execute a false command under certain single bit error conditions. The probability of this happening, however, is very low- best calculations indicate this probebility to be approximately 10^{-10} to 10^{-11}.

E. E. Department

Approved by:
RiJifatte.
R. J. Fatka, Supervisor Electronic Design Group
E. E. Department

Approved by:

INVESTIGATION OF ALSEP ADDRESS CODES	No. ATM-843	$\mathrm{p}^{\text {REV. no. }}$
	page 1	OF
	date 2 Dec	. 1969

REFERENCES

1. Command Decoder Specification AL 310800 C Amendment 1 - 5/14/68
2. ALSEP Address Codes

ATM-696-9/20/67
3. Interface Control Specification for MSFN/ALSEP

IC 314115-6/17/66

Specification Change Notice No. 1-5/12/67

PROBLEM STATEMENT

The object of this investigation was to determine if one or more seven (7) bit code groups, other than the codes presently in use on ALSEP, are available for addressing additional ALSEP systems. A computer simulation program was to be used. The constraints applied in selecting the presently used codes were to be considered and the extent of compromise incurred by partially relieving those constraints was to be assessed.

The codes presently in use on ALSEP will hereafter be referred to as the Existing ALSEP Addresses (or as the Existing Addresses).

RECOMMENDED ADDRESSES

Two (2) 7-bit binary numbers, (0110010) and (1100100), have been found that satisfy the constraints applied in selecting the presently used address codes.

These two numbers were found, by computer simulation of the command decoder, to be compatible with the eight Existing ALSEP Addresses. That is, if no bit-errors occur in the command word transmission (also referred to as the command message transmission), no erroneous command executions will take place.

Also, with the addition of a fifth ALSEP, using these numbers as the 5A and 5B addresses, the probability of an erroneous command execution by one of the ALSEPS will be approximately the same as when only four ALSEPS are in use.

All of the simulations and probability calculations were made with the assumption that all four (or more) of the ALSEP's were in operation.

需 1

INVESTIGATION OF ALSEP ADDRESS CODES	$\begin{aligned} & \text { no. } \\ & \text { ATM-843 } \end{aligned}$	$\mathrm{L}^{\text {Rev. no. }}$
	Page 2	OF
	date 2 Dec	1969

BACKGROUND

When it is desired to have an ALSEP execute one of the allowed onehundred (100) commands, a sixty-one (61) -bit serial command word (message) is transmitted to ALL of the ALSEP's. The command word format is shown in Figure l. A twenty-bit preamble containing all ones (l's) is followed by a seven-bit address; then the seven-bit one's (digit) complement of the command code, the seven-bit command code, and twenty timing bits (all ones). Reference 1 .

At some point in the Preamble during the serial input of the message each of the ALSEP's will "lock on" to the incoming signal. From that time (not necessarily exactly the same for all of the ALSEP's) each of the ALSEP's will start looking for seven (7) bits in succession that match one of its two addresses. It is likely that more than one of the ALSEP's will recognize its address. For instance, the command complement code may be the same as the address code for an ALSEP other than the one addressed. In that case the addressed ALSEP will recognize its address code at ADDRESS Bits 1 through 7 and the other will recognize its address seven bits later in the command word transmission.

To reduce the probability of erroneous command execution, not only must an address be recognized, the next fourteen bits must, also pass, a bit-by-bit parity check. In the command word, the seven bits preceding the command contain the bit-by-bit complement of the command. If Command Bit l is a "l" then Command Complement Bit l will be " 0 ", etc. If there are no bit-errors in the transmission of the command word, a parity check starting at command complement Bit l will always pass, resulting in the execution of the command represented by the code in Command Bits 1 through 7. Note, though, that a parity check is not made by an ALSEP until after its address is recognized.

If some bit(s) transmitted to the ALSEP's is (are) in error, it is possible that one or more of the ALSEP's will recognize its address at some incorrect time and then make a parity check on the next fourteen bits that will pass. For example, suppose ALSEP-2 (B) were addressed with the Command Code (0111110) 2 and an error occurred in PREAMBLE Bit 18, then ALSEP-1 (A) will recognize its address starting at PREAMBLE Bit 17 and ending at ADDRESS Bit 3. The next 14 bits will pass a bit-by-bit parity check and the command corresponding to the command code (0001011) 2 will be erroneously executed (See Figure 3).

INVESTIGATION OF ALSEP ADDRESS CODES	$\begin{aligned} & \text { No. } \\ & \text { А TM }=843 \end{aligned}$		(REV. NO.
	Page	3	OF
	date	2 D	. 1969

ADDRESS CODE SELECTION - PROCEDURE

The procedure followed to obtain the recommended address codes is illustrated in Figure 2. First, all of the 1287 -bit binary numbers were listed. Eighty-one of the numbers were eliminated for the reasons enumerated in Table 2. The remaining 47 numbers, called Candidate Addresses, are listed in Table 3. The blank spaces in Table 3 were occupied by numbers that should have been eliminated in the first pass.

The Hamming Distance between each of the 47 Candidate Addresses and each of the Existing ALSEP Addresses was checked. The Existing ALSEP Addresses are listed in Table l, and the results of the Hamming Distance checks are shown in Table 4.

The Candidate Addresses that were at least a Hamming Distance of three (3) away from ALL of the Existing Addresses were included in the group of Possible Addresses, listed in Table 5. Next, the Hamming Distance between all pairs of the Possible Addresses was determined. The results of that last Hamming Distance check, listed in Table 5, were used to determine what combinations of the seven Possible Addresses might be used as ALSEP addresses. Note, for example, that if Possible Address \#5 were used, then only one pair of addresses satisfying the Hamming Distance three (3) constraint would be available.

Next, a computer simulation of the command decoder which assumed error-free transmission was used to check the compatibility of each of the seven Possible Addresses with all of the eight Existing Addresses. It was found with the first run of this computer simulation that Possible Addresses \#4 and \#6 were not compatible with the Existing Addresses. Ifeither of those two numbers were used as an ALSEP address, with no bit-errors in transmitting the command word, erroneous command executions could occur. Further use of the ERROR-FREE-TRANSMISSION COMPUTER SIMULATION showed that, if no bit-errors occurred in the transmission of the command word, all of the remaining five Possible Addresses (\#1, 2, 3, 5, 7) could be used, at the same time, with the eight Existing ALSEP Addresses with no erroneous command executions occurring. Those remaining five Possible Addresses were relabled and listed in Figure 2 under the title "Compatible Addresses".

INVESTIGATION OF ALSEP ADDRESS CODES	No. ATM-843	REV. NO.
	PAGE 4	OF
	date 2 De	. 1969

Since Possible Address \#5 (Compatible Address \#4) was not at least a Hamming Distance of three away from at least two of the other Compatible Addresses, it was not tested further. Also, Compatible Address \#l was not tested further since it was finally ('better late than never') noticed that that number was only a Hamming Distance of one (1) away from the alternate onezero pattern that is periodically transmitted. Note that with a relaxation of the Hamming Distance constraint that Compatible Address \#4 would be a prime candidate for use as an ALSEP address.

The eight Existing ALSEP Addresses and Compatible Addresses \#2, 3, and 5 were tested with the ERROR-IN-TRANSMISSION COMPUTER SIMULATION. That simulation was essentially the same as the ERRORFREE TRANSMISSION COMPUTER SIMULATION except that the effects of a single bit-error in each of the command word bits were determined. With a single-bit-error in transmission, the two Recommend Address, listed at the bottom of Figure 2, behaved as well as the Existing Addresses and did not degrade the overall behavior of the group.

ERROR-IN-TRANSMISSION SIMULATION RESULTS

The results of the ERROR-IN-TRANSMISSION SIMULATION are listed in Table 6 and 7. Note that at the top of Table 6-Sheet 1 there is a circled number above each column. Table 6 might be read in the following way: if it is intended that ALSEP 1 execute Command $\sqrt{2}$ and a transmission error occurs in bit 3 of the command message, then ALSEP (4 will execute command 5 . The ALSEP 4 address will be recognized starting at bit 6 of the serially input command message.

An erroneous Command acceptance (resulting in an erroneous execution) is illustrated in Figure 3. Note that the error, in PREAMBLE Bit 18, is shown in a thick-sided rectangle. Since $X_{i}=0$ or l for all i, there are eight (8) 7-bit binary codes that could pass the parity check:

Intended Command	Erroneously Executed
	Command
0001110	0001000
0011110	0001001
0101110	0001010
0111110	0001011
.	。
-	。
.	-
1111110	0001111

INVESTIGATION OF ALSEP ADDRESS CODES	No. A.TM- 843	REV. NO.
	Page 5	OF
	Date 2 De	1969

Of the eight intended commands, octal command codes (016), (116), and (176) are not allowed. Also, of the eight "erroneously executed commands', octal command codes (101) and (016) are not allowed; therefore, only four out of the eight code combinations of $\mathrm{X}_{1} \mathrm{X}_{2} \mathrm{X}_{3}$ can result in an erroneous command exectuion.

To obtain a quick upper bound on the probability of an erroneous command execution by each of the ALSEP's, calculations were made which assumed that all 4 (or 5) of the ALSEP's were in operation, that any address was equally probable, and that any command was equally probable. Also, the "not allowed" commands were not eliminated. With or without an ALSEP 5 (using the two Recommended Addresses), the probability of an erroneous command execution by any given ALSEP is less than or equal to approximately 10-10. Roughly, the probability may vary between 3×10^{-10} and 10^{-11}. A sample calculation has been included, following Table 7.

ADDITIONAL ADDRESS POSSIBILITIES

If Possible Address \#7 (Table 5 - Also listed as Compatible Address \#5, Figure 2) were used as an additional ALSEP address, the added ALSEP command decoder would have two (2) to three (3) times the probability of erroneously accepting a command as would anyone of the other ten decoders (1A, 1B, , 5A, 5B) without the addition of Possible Address \#7.

If the one-zero pattern that is periodically transmitted is less than seventeen (17) bits long, Possible Address \#l (Table 5 - Compatible Address \#1, Figure 2) may also be an acceptable address.

Since the probability of erroneous command acceptance with a onebit (l-bit) error in the command word (message) transmission is much greater than the probability of a two-bit (2-bit) error in the command word transmission, the address selection constraints might be relaxed to a Hamming Distance two (2) separation. If the Hamming Distance constraint is relaxed to a separation of two (2), Table 4 may be used to pick numbers from Table 3 for further testing with the Existing ALSEP Addresses.

If the Hamming Distance constraint were relaxed to two (2), Compatible Address \#4 might be a prime candidate for use as an ALSEP address. The reason for this is explained under the heading "ADDRESS CODE SELECTION-PROCEDURE"。

Bendtr	INVESTIGATION OF ALSEP ADDRESS CODES	$\\|_{\text {A. }}^{\text {No. }} .$	-843	$1 \text { REV. NO. }$
		Page	6	OF
		Date	2 D	. 1969

COMMAND DECODER SIMULATIONS - GENERAL DESCRIPTIONS

The ERROR-FREE-TRANSMISSION Simulation Program assumed that no transmission errors occurred. The program simulated the serial input of the command word into each of the ALSEP Command Decoders, the check by each of the Command Decoders for address recognition, and the bit-by-bit parity check of the next fourteen bits if an address was recognized. If the parity check passed, the program would print out sufficient data to reconstruct the situation that would cause the erroneous command execution.

Each of the Command Decoder addresses (i.e., A and B) was treated as an independent ALSEP. The affect of that simplification was to allow the A (B) or $B(A)$ half of a Command Decoder to respond after the other half had already recognized its address.

The command word included, in succession, each of the addresses under test (including the Existing eight) in combination with each of the 128 possible 7 -bit codes that could be inserted into the seven (7) Command bits. For each address-command combination, a comparison against each of the addresses under test, including the eight Existing ALSEP Addresses, was made starting at each bit position of the "incoming'command word.

The ERROR-IN-TRANSMISSION Simulation Program was essentially the same as the other simulation except that a single bit-error was included, in succession, in each position of the command word. That is, the ERROR-FREE-TRANSMISSION Simulation Program was run with the content of the error position in the command word containing the complement of the correct bit value. The error position was varied from Preamble Bit 14 through Timing Bit 20. A quick visual inspection of the command word format would show that an erroneous command execution could not be caused by a single bit-error in any of the first thirteen Preamble bits.

ERROR-FREE-TRANSMISSION SIMULATION PROGRAM

Appendix A contains an illustration, entitled COMPUTER STORAGE, of the major ERROR-FREE-TRANSMISSION Program variables.

The Address List contains all of the addresses to be tested in a given computer run. The number of address, R, is a variable read into the computer prior to reading the list of addresses.

INVESTIGATION OF ALSEP ADDRESS CODES	$\left.\right\|_{\text {ATM- }} ^{\text {No. }}$	$\chi^{\text {REV. NO. }}$
	PAGE 7	OF
	date 2 De	. 1969

The Command Storage is a "seven-bit" binary counter. Each "bit" is stored in a separate computer storage location. A counter simulation routine in the program increments the command from ($0,0,0,0,0,0,0$) binary to (l, l, l, l, l, l, l) binary by steps of one (l), and resets the counter. The counter goes through a complete cycle for every address inserted in the command word. (Actually, the addresses are varied in the inner program loop and the counter is stepped in the outer loop.)

The Command Complement contains the one's complement of the command. The command complement is loaded after each change in the command.

The Command Word: (Abbreviated) is a 48-bit binary vector. Note that the first thirteen Preamble bits have not been included in the simulation and that the command word bits have been renumbered with W(I) equal to command word bit ($\mathrm{I}+13$).

Whenever a parity check is passed, a printout occurs which includes the command code that passed the parity check ("command recognized"), the intended command (in decimal form, labeled "Command in Command Storage" or "CICW") and the numbers "I", "J", and "K"。 The number "I" indicates the starting position in the abbreviated command word of the recognized address. The numbers "J" and "K" refer to the address list which appears at the beginning of the output for each run. The number "J" is the number of the recognized address, and ' K ' is the number of the intended address.

Also in Appendix A are the flow chart and program listing for the ERROR-FREE-TRANSMISSION Simulation Program. The program was written in the GE 400 Series Basic Language.

ERROR-IN-TRANSMISSION SIMULATION PROGRAM

The major variables of the ERROR-IN-TRANSMISSION Program are the same as for the ERROR-FREE Program except that it was found that the Command Complement Storage could be eliminated (complement of command obtained while loading abbreviated command word). Also, a new variable, "ERPOS"(Error Position), was added to mark the position of error insertion.

In the ERROR-IN-TRANSMISSION Program, only those conditions affected by the error were tested. Those conditions are outlined in Appendix B "Program Execution Parameters". Also in Appendix B are a list of computer storage (of the variables), a flow diagram showing the modifications made of the ERROR-FREE Program, and a program listing. The program was written in the IBM System/360 Fortran IV language.

Command Word Format And Transmission

TRANSMISSION ORDER BIT CONTENT:

BIT NUMBER:

\uparrow
SYNCHRONIZATION COMPLETED SOMETIME BETWEEN PREAMBLE BITS 12 THROUGH 18 .

Address Code Selection - flow chart

128 T-BIT BINARY NUMBERS

IMMEDIATE "ADDRESS" ELIMINATION -
(TABLE 2)

47 CANDIDATE ADDRESSESS (TABLE 3)

HAMMING DISTANCE CHECK AGAINST EXISTING EIGHT ALSEP ADDRESSES
(TABLE 4)

7 POSSIBLE ADDRESSES (TABLE 5)
ERROR-FREE-TRANSMISSION
COMPUTER SIMULATION

5 COMPATIBLE ADDRESSES

1) 0100010
2) 0110010
3) 1100010
4) 1100100
5) 1000011

2 RECOMMENDED ADDRESSES
D 0110010 - ALSEP 5A
2) $1100100-A L 5 E P S B$

$$
\text { FIG. } 2
$$

$$
\text { EXAMPLE } 1 \text { - CLARIFICATION OF TABLE } 6
$$

SAMPLE CASE: FIRST ENTRY (ROW 1)

EXAMPLE OF COMMAND INTERPRETATION: $x_{i}=0,1$ FOR ALL i

$$
\text { For } x_{1}=0 \quad x_{2}=1 \quad x_{3}=1
$$

IF IT IS INTENDEd TOT ALSEP $2 B$ EXECUTE COMMAND

$$
0111110
$$

THEN ALSEP IA WILL EXECUTE

$$
0001011
$$

NOTE THAT, IN THIS EXAMPLE, THE INTENDED COMMAND EXECUTION WILL ALSO TAKE PLACE.

$$
\text { FIGURE } 3
$$

(no.

No. ATM-843	REV. no.
PAGE 11 OF	
date 2 De	1969

TABLE 1
EXISTING ADDRESSES

ALSEP (Command Decoder Number)	Binary Address Code Number	Address Number (For Simulation Programs)
1A	1011000	1
1B	0011000	2
2A	1001110	3
2B	0001110	4
3A	1101001	5
3B	0101001	6
4A	0010101	7
4B	0110101	8

INVESTIGATION OF ALSEP ADDRESS CODES	NO. A.TM-843	REV. NO.
	Page 12	OF
	date 2 Dec	1969

TABLE 2

KEASONS FOR IMMEDIATE "ADDRESS" ELIMINATION

1. Alternate l, 0's or a Hamming Distance of one from alternate l, 0's.
2. Already used as one of the eight existing addresses.
3. A Hamming Distance of one from one of the eight existing addresses.
4. A string of one's followed by a string of zeroes or visa versa.
5. All zeroes.
6. All ones.
7. Hamming Distance one from (lllllll)2.
8. Hamming Distance one from (0000000)2.

Candidate Addresses- Harming Distance Check
against existing alsep aDdresses
hamMING DISTANCE

TABLE 4 - SHEET 2 OF 3
Candidate Addresses - Hamming Distance Check AGAINST EXISTING RLSEP ADDRESSES

HAMMING DISTANCE

HAMMING DISTANCE

$$
\begin{aligned}
& \text { THESE BODRESSET CANNOT DLL BEN } \\
& \text { WSED SIMUCTANEOLSECY. }
\end{aligned}
$$

(1) 0100010
(2) 0110010
(3) 1100100
(4) 1100111
(5) 1100010
(6) 1010011
(7) 1000011

Hambing Distance Check - between the possible nodresses

ThbLE 6 - Sheet, of 2

* for altcrnate one/zeeo teailing bit patmern

TABLE 6 - SHEET 2 OF 2

* FOR ALTERNATE ONE/ZERO TRAILING BIT PATTERN.

Thble 7
Page 20.

INTENDED ADDEP	ALSEP RECOGNZING ADDRESS
$1 A$	$2 B$
	$4 A$
$1 B$	$2 B$
	$3 A$
	$4 B$
$2 A$	$3 A$
	$4 A$
$2 B$	$1 A$
	$4 A$
$3 A$	$2 A$
$3 B$	$2 A$
	$4 B$
$4 A$	$3 A$
	$3 B$
	$5 A$
$4 B$	$3 A$
$5 A$	$4 A$
$5 B$	$2 A$
	$3 A$

Sample Calculation- ERRONEOUS COMMRND execution

LET E = ALSEP (COMMAND DECODER NUMBER) IA WILL ERRONEOUSLY RECOGNIZE ITS ADDRESS ND A COMMAND.

THEN, FOR EXISTING ADDRESSES ONLY

$$
\begin{aligned}
& \text { INTENDED ALSoP }
\end{aligned}
$$

ADORESSESTHAT,
WITH A BTT-ERROR
COULD RESMCTAN
SEP 2 A ERRONEOUSLY
EXECUTING A COMMAND.

IF (\# OF COMMANDS THAT COULD BE EXECUTED) 15 REPLACED BY (\# of 7-BIT PATTERNS THAT COLLD PASS THE BIT-BY-BIT PARITY CHECK), TNEN Prob (E) WOULD BE LESS THAN OR EQUAL TO THE RIGHT NAND SIDE OF TNE EQUATION (Almost always "less than")

$$
\operatorname{Prob}(E) \leq\left[6 \times\left(\frac{1}{8} \times \frac{16}{100}\right)\right] \times 10^{-9}=12 \times 10^{-11} \approx 10^{-10}
$$

INCLUDING THE PAIR OF RECOMMENDED NEW ADDRESSES

$$
\begin{aligned}
& P(E) \leq\left[6 \times\left(\frac{1}{10} \times \frac{16}{100}\right)+3 \times\left(\frac{1}{10} \times \frac{8}{100}\right)\right] \times 10^{-9} \\
& =12 \times 10^{-11} \approx 10^{-10}
\end{aligned}
$$

INVESITGATION OF ALSEP ADDRESS CODES	No. ATM		$\mathrm{R}^{\text {REV. No. }}$
	PAGE _ Of_		
	date	2 D	c. 1969

APPENDIX A

ADDRESS LIST:

COMMAND STORAGE: CC

CDABAND COMPLEMENT: $\overline{C C}$

COMMAND WORD: (ABBREVIATED)

W(1), ... W(48) MAKES UP THE ABBREVIATED COMMAND WORD THAT WILL BE LOOKED AT IN THE PROGRAM

SHEET 2
COMMAND COMPLEMENT ROUTINE

SHEET 3

ADDRESS INSERTION ROUTINE

SHEET 4
RDDRESS COMPARISON ROUTINE

SHEET 5
PARITY CHECK

* $\begin{aligned} I & =\text { starting position of recognized address } \\ J & =\text { No. of recognized address as listed at start of output } \\ K & =\text { No. of intended adderess. }\end{aligned}$

SHEET 6
ADD ONE TO COMAAND ROUTINE

Error-Free-Treansmission Simulation Program -sheet/
VERSION 2
(LANGUAGE: G.E,-400 SERIES BASIC)

```
        9 LET \(B=0\)
        10 DIM \((7), N(7), N(48), \quad A(20,7)\)
        20 READ \(R\)
        30 MAT READ \(A(R, 7)\)
        40 MAT \(C=Z E R\)
        50 MAT \(N=C \varnothing N\)
        60 MAT \(W=C \phi N\)
        \(70 F \varnothing R \quad I=1 . T \varnothing R\)
        80 PRINT "ADDRESS "; I,
        90 FDR \(J=1 T \phi 6\)
100 PRINT \(A(I, J)\);
110 NEXT J
120 PRINT A \((I, 7)\)
130 NEXT I
140 GD TD 320
```

210 REM CoMMAND COMPLEMENT ROUTINE
220 FoR $\angle 1$ To 7
230 LET NL) $=1-C(L)$
240 NEXT \angle
320 FOR $P=1 T \varnothing 7$
330 LET $W(P+14)=N(P)$
340 LET $W(P+21)=C(P)$
350 NEXT P
360 Gl TD 410

410 REM ADDRESS INSERTIoN RoUTINE
420 LET KO
440 LET $K=K+1$
450 IF K>R THEN 1310
470 FoR $H=1 T \varnothing 7$
480 LET $W(H+7)=A(K, H)$
490 NEXT H
500 GTD 620
610 REM ADDRESS CФMPARISめN RoUTINE
620 LET $I=1$

640 LET $J=1$
660 FDR $X=1$ To 7
670 IF $W(I-1+X)\langle>A(J, X)$ THEN 920
680 NEXT \times
690 IF $I=8$ THEN 780
695 GeT\& 1110

Error-Free-Transmission Simulation Program - sheet 2 VERSION Z

```
    780 F\varnothingR X=1 T\varnothingワ
    790 IF }A(J,X)<>A(K,X) THEN 1/1
    800 NEXT X
    920 LET J=J+1
    940 IF J>R THEN 9>0
    950 G\varnothingT T\varnothing 660
    970 LET I=I+1
990 IF I>28 THEN 440
1000 G& T\phi 640
1110 REM PORITY CHECK R\varnothingUTINE
1120 LET M=I
1/30 LET Y=ワ
1140 IF W(M+Y)=1-W(M+Y+7) THEN }92
1150 LET Y=Y+1
1160 IF Y>13 THEN /180
1170 G\varnothing T\varnothing /140
1180 PRINT "CФMHAND REC\varnothingGNIZED";
1190 F\varnothingR X=M+14 T\varnothing M+19
1 2 0 0 ~ P R I N T ~ W ( X )
1210 NEXT X
1215 PRINT W(M+20)
1220 PRINT "COMMAND IN COMMAND STQRAGE";
1230 PRINT B
1240 PRINT "I=";I,"J="; J,"K=";K
1245 PRINT"CICW";
1250 FOR G=22 T\varnothing 27
1252 PRINT W(G)
1255 NEXT G
1257 PRINT W(28)
1260 G\varnothing T\varnothing 920
1308 REM ADD \varnothingNE T\varnothing CQMMANO R\varnothingUTINE
1310 F\varnothingR }z=7\mathrm{ TD / STEP 
1320 IF C(Z)=0 THEN 1360
1330 LET C(Z)=0
1340 NEXT Z
1350 STOP
1360 LET C(Z)=1
1365 LET B=B+1
1366 PRINT B
1370 G\varnothing T\varnothing 210
```

Error-Free-Transmisslon Simulation Program - Sheet 3 VERSION 2

INVESTIGATION OF ALSEP ADDRESS CODES	No. ATM		
	PAGE OF		
	date	2 D	c. 1969

APPENDIX B
program execution Parameters
FOR SIMULATION INCLUDING
TRANSMISSION ERROR:

1) $\quad 9 \leqslant E R P \varnothing S \leqslant 28$
2) $F O R$

$$
9 \leq E R P \varnothing 5 \leq 21, \quad 9 \leq I \leq \text { ERP片 }
$$

3) FOR

$$
22 \leq E R P \beta \leq 28 \quad, \quad 9 \leq I \leq 21
$$

COMMEnts: (AtE ABy item)

1) $1 \leq E R P \phi S \leq 8,29 \leq$ ERPDS 548 : SIMULATION DONE ANnUALLY.
2) I \triangle ERPQS: SAME IOS NOTTRANSMISSLONOERROR SiMuLATION.
3) I 21 : 1 NU SINGLE (OR MULTIPLE)ERROX IN THE COMMAND (BITS 22 TO 2B) WL LL CONVERT IT TO ANOTHER COMMAND (SINCE ALL 12S POSSIBLE NOS. WERE CONSIDERED) THAT WAS CHECKED AN THE NO TRANSMISSION-ERROR SMMLATCDN.

Completer Storage for arror-in-transmission simulation

ADDRESS LIST:

ALsep /A
ACSEP IB

COMMAND STORAGE:

$$
c(1) \cdots c(7)
$$

COMMAND WORD: (ABBREVIATED)
SAME AS FOR ERROR-FREE-TRANSMISSION SIMULATION

Program Modifications: sheet i initialization

1) DIMENSIONS: $A(12,7), C(7), w(42)$
2) READ R
3) READ ADDRESS LIST

$$
\begin{gathered}
A(1,1), \ldots, A(1,7) \\
\vdots \\
A(R, 1), \cdots, A(R, 7)
\end{gathered}
$$

4) PRINT ADDRESS $\angle 15 T$
5) SET ERROR POSITIUN TO 9:

$$
E R P \phi S=9
$$

6) PRINT ERROR POSITION:

TRANSFER TO EROS WRITE AND BACK TO INITIRLIEATLOW (7).
7) SET COMMAND TO NLL ZEROS:

$$
C(I)=0 \quad I=1, \cdots, 7
$$

8) SET COMMAND WORD TORLL ONES:

$$
w(I)=1 \quad I=9, \ldots, 42
$$

9) SET DE(IMNL) COMMAND TO ZERO:

$$
D C=0
$$

Program Modifications : Sheet 2 COMMAND COMPLEMENT (COMMAND INSERTION)

1) TNSERT COMMAND COMPLEMENS INTO THE COMMAND WORD:

$$
w(P+14)=1-c(P) \quad, P=1, \ldots, 7
$$

2) INSERT COMMAND INTO THE COMMAND WORD:

$$
w(p+21)=c(p), p=1, \ldots, 7
$$

Program Modifications: sheet 3
ADDRESS INSERTION

Program Modifications: sheet 4

 ADDRESS COMPARISON

ADD ONE TO COMMAND

Program Modifications: sheet 5
ERROR POSITION INCREMENT

0055 0056 0057 0058 0059了0 0 0061
0061
0 Cc 2
0063
00084
0C65
コC66
$0 \cos 7$
0 C68
0 065
007 C
0071
0072
0 C 73
0 C 74
$0 C 75$
0076
3017
3078
$0<75$
3080
JC81
0082
2033

$Y=Y+1$

IF (Y.GT.13) GO 10213
GOTO 212
$213 \mathrm{IPCl} 14=1 \mathrm{PC}+14 \quad 610$ $I P C 20=I P C+20 \quad 630$ hRITE (6,502$)(W(L), L=I P C 14, I P C 20)$

630
502 FORMAT (19HOCOMMAND RECOGNIZEC,4X,7I2) 640 WRITE $(\epsilon, 503)$ DC. 660
503 FORMAT (I7H INTENDED COMMAND,6X,I3) 660 WRITE $(6,504)$ I,J,K,ERFOS 670
 GO TU 206

ADD ONE TO CCMMANU	700
214 DU $1 C E \quad \angle=1,7$	710

1 CB continue 730
740 740
750
GU TO 215 770

$216 \mathrm{C}(\mathrm{IL})=1$ 70 | $\mathrm{DC}=\mathrm{DC}+1$ | 780 |
| :--- | :--- |
| 900 | | WRITE(Ó5C5) DC 800

505 FORMAT (1H,14) 800
810 GO TO 2 C 2
215 ERPCS=ERPCS+1 830
$\begin{array}{ll}200 \text { WRITE }(\epsilon, 506) \text { ERPCS } & 830 \\ 2060\end{array}$
506 FORMAT (7HOERPCS $=, 2 x, 121)$ 840
850
IF (ERPOS.LE.26) GO TO 201 STOP
END

6Cil Furmat (711)
ci cuntinue
$0010 \mathrm{C} \quad \mathrm{I}=1, \mathrm{R}$
$1,(A \mid I, J), J=1,7)$
50
60
$\begin{array}{r}70 \\ \hline\end{array}$
500 FORMAT (8 H AODRESS, $2 \mathrm{X}, \mathrm{I} 2,6 \mathrm{X}, 7 \mathrm{I} 2$)
100
110
ERPUS=21
140
150
C(1)=0
D0 $103 \quad I=8,42$
h($11=1$
$O C=0$
GO TU 232
COMMAND AND COMMAND CONPLEMENT INSERTION
$W(P+14)=1-C(P)$
$n(P+21)=C(P)$
4 CONTINUE
N(ERPGS) $=1-$ WIERPOS
GU TO 203
ADCRESS INSERTICN
$203 \mathrm{~K}=\mathrm{C}$
C9 $K=k+$
10214
00 IC5 $\quad H=1,7$
05 CJNTINUF
AOURESS COMPARISEN
$204 \mathrm{l}=\mathrm{C}$
$10 \mathrm{~J}=1$
207 DO 10E $x=1,7$
$1 \mathrm{X}=1-1+\mathrm{X}$
IF (h(IX).NE.A(J,X)) GO TO 2C6
Cuntinue
cu T] 211
If (JoGTaR) GU TC 2 CB
GU TO 2C7
IF (I.GT,ERPGS) GU TL 209
IF (I.GT,15) GO TC 259
PARITY CHECK
211 IPC=1
$I Y=I+Y$
IF (WGIY)oVEo(l-N(IY7))) UL TO 206
201 DO 102
0036
$0<27$
0038
0639
0040
0040
0841
3042
) 04
0 C 44
0245
$0 C 4 t$
2047
0.48

ors

