

NO.	KEY. NO.
ATM 501	B-3
PAGE 1	of3
DATE 8/6/71	

This addendum updates ATM 501-B ASE by:

- Replacement of the old 16 Channel MUX FMECA work sheets, pages 3.9.49;50; and 51 (3 pages) with nine new FMECA work sheets. This change is a result of change to a new BxA supplied MUX. See Attachment I. The new MUX FMECA is also called out in ATM 912 dated 8/20/70.
- 2. Addition of four (4) FMECA work sheets to Section 3.9 to cover EMI modifications. These sheets are also found in ATM 840 dated 11/5/69. See Attachment II.
- 3. Addition of one FMECA work sheet to Section 3.9 to cover changes in the Central Station. See Attachment III.

The FMECA work sheet in Attachments I, II, and II are to be added to ATM 501-B as indicated.

Prepared by:

20 Khales

R. W. Hiebert

Reliability Engineer

Approved by:

S. J. Ellison, Manager

ALSEP Reliability

ATM 501	B-3		
PAGE 2	or <u>3</u>		
DATE 8/6/71			

1.1 INTRODUCTION

This analysis is detailed at the Active Seismic Experiment electronic modification level for Array D as a supplement to the ALSEP Failure Mode, Effects, and Criticality Analysis, ATM 501B. ATM 501B includes the ASE Failure Mode, Effects and Criticality Analysis at the experiment and subsystem level. Each potential failure is considered in light of the probability of occurence, failure mode distribution and its effect on experiment success.

1.2 PURPOSE

The purpose of this supplement is to update the failure mode, effects, and criticality analysis of modifications made to the ASE/CSE for Array D.

1.3 ASE/CSE MODIFICATIONS

The following ASE/CSE modifications have been incorporated into the Active Seismic Experiment for Array D.

- A. Use of BxA 16 Channel Mux and A/D converter (see enclosure 1).
- B. The 16 channel EMI modification included the following:
 - (1) Added capacitor C10 (.01 μ F) to A/D converter board No. 1 for filtering.
 - (2) Changed R1 (2.7 Ω 1/4w) to L1 (100 μ hy) choke to reduce ripple on A/D converter board No. 2.
 - (3) Added capacitor C11 (470 pfd) to A/D Converter Analog Assy for filtering.
- C. The ASE/CSE Thumper RTE Initial Revel Modification included the following:
 - (1) Removal of capacitor C102 (22 pfd) used to preset flip flop.
 - (2) Added blocking diodes CR 102 and CR 103 (SM1N914).
- D. The EMI modifications specified in (enclosure 2) were made to the ASE prior to Array A-2.

ATM 501	B-3
PAGE B	or <u>3</u>
DATE 8/6/70	i .

2.0 FAILURE MODES, EFFECTS & CRITICALITY ANALYSIS

The failure mode and effects analysis for the active Seismic Experiment modifications to Array D on a piece part level are documented in enclosure 3. The criticality ranking for those modifications contained in enclosure 3 are as follows:

Criticality Ranking

- I Loss of Experiment
- II Degradation of Experiment

3.0 SINGLE POINT FAILURE SUMMARY

Five components have been added to the Array D ASE which would constitute loss of either the Thumper or ASE in the event of failure in the particular mode as specified in enclosure 1. Weight, power, and space constraints have ruled out the possibility of making these elements redundant. The probability of any of these devices failing in a single point failure mode is relatively insignificant when compared to the total number of single point failures already in the ASE.

NO.		REV	. NO.	
ATM	501	E	3-3	
PAGE _	1	OF_	10	_
DATE	8/6/	71		

Attachment I

Remove from ATM 501-B the following FMECA work sheets:

Page 3.9.49 3.9.50 3.9.51

Replace with the attached new FMECA work sheets:

Page 3.9.49.1 3.9.49.2 3.9.49.3 3.9.50.1 3.9.50.2 3.9.50.3 3.9.51.1 3.9.51.2 3.9.51.3

FAILURE MODE, EFFECT & CRITICALITY ANALYSIS

SYSTEM ALSEP R. J. Dallaire ATM501 B-3

END NEM ASE/CE DMG NO. 2346700 PAGE 3.9.49.1

ASSYY 16 Ch. MUX DMG NO. 2346711 DATE 9/20/70

CIRCUIT	ASSIMED FAILURE MODE		EFFECT C	FAILURE	CRITIC -	
OR FUNCTION	ASSUMED FAILURE MODE	CAUSE OF FAILURE	END ITEM	SYSTEM	PROBABILITY Q x IC-5	ALITY
1.0 First Tier Channel	1.0 Failure as Shown Below	1.0 Electrical Failure	1.0 ASE MUX Affected as Shown	1.0 Output Affected as Shown	. 00300	3
Encoder	1.1 One First Tier MOS FET Gate in Each of the Four MOS-FET Chips is Always "On".	1.1 Output of SN54L20 Fails High	1.1 (3 of 4 Channels of each First Tier MOS FET Chip will be Lost	1.1 Loss of 12 Channels		
4.	1.2 One First Tier MOS FET Gate in Each of the Four MOS-FET Chips is Always "Off".	1.2 Output of SN54L20 Fails Low	1.2 One Channel From each First Tier MOS Chip Lost	1.2 Loss of 4 Channels		
	1.3 First Tier MOS FET Gate Always "Off".	1.3 Input Fails Open or Short	1.3 One Channel From each First Tier MOS Chip Lost	1.3 Loss of 4 Channels		
2.0 Second Tier Chan- nel Encod-	2.0 Failure as Shown Below	2.0 Electrical Failure	2.0 ASE MUX Affected as Shown	2.0 Output Affected as Shown	.00300	3
er				¥ **		
	2.1 Second Tier MOS FET Gate Always "On"	2.1 Output of SN54L20 Fails High	2.1 3 of 4 First Tier MOS Chip Lost	2.1 Loss of 12 Channels		1
, 4 , -	2.2 Second Tier MOS FET Gate Always "Off"	2.2 Output of SN54L20 Fails Low	2.2 One First Tier MOS Chip Lost	2.2 Loss of 4 Channels		,
	2.3 Second Tier MOS FET Gate Always "Off"	2.3 Input Fails Open or Short	2.3 One First Tier MOS Chip Lost	2.3 Loss of 4 Channels		
3.0 First Tier MOS FET Gate Drivers	3.0 Failure as Shown Below	3.0 Electrical Failure	3.0 ASE MUX Affected as Shown	3.0 Output Affected as Shown	.00240	5
	3.1 Driven MOS FET Always "Off"	3.1 Driver Output Fails High	3.1 One Channel From each First Tier Chip Lost	3.1 Loss of 4 Channels		
). 	3.2 Driven MOS FET Always "On"	3.2 Driver Output Fails Low	3.2 3 of 4 Channels From Each First Tier Chip Lost	3.2 Loss of 12 Channels		

MODE, EFFECT & CRITICALITY ANALYSIS FAILURE

CAUSE OF FAILURE

4.1 Driver Output Fails High

4.2 Driver Output Fails Low

5. 1 Short Source-Gate or Any

Source-Substrate, Drain-

Gate, or Gate-Substrate

5. 2 Short Drain-Substrate,

5.3 Short Drain-Source

Used Gates

6.0 Electrical Failure

Open

5.4 Short Drain-Substrate of

6.1 Short Source - Gate or Any

Source-Substrate, Drain Gate, or Gate-Substrate

6.2 Short Drain-Substrate.

6.3 Short Drain-Source

Unused Gates

6.4 Short Drain-Substrate of

5.0 Electrical Failure

4.0 Electrical Failure

END ITEM

4.0 MUX Affected as Shown

4.2 3 of 4 First Tier Chips

5.0 MUX Affected as Shown

5.1 Loss of 1 Channel

Channels

Channels

Channels

5.2 Loss of 4 consecutive

5.3 Loss of 3 Consecutive

5.4 Loss of 4 Consecutive

6.0 MUX Affected as Shown

6.2 Loss of all channels

6.3 Loss of All Channels

6.4 Loss of All Channels

Lost

Lost

CIRCUIT OR FUNCTION

Tier MOS FET Gate Drivers

5.0 First Tier

FET

6.0 Second

Tier FET

4.0 Second

ASSUMED FAILURE MODE

4.0 Failure as Shown Below

4. 1 Driven MOS FET Always

4.2 Driven MOS FET Always

5.1 Loss of a Gate on Chip

5.2 Loss of MX02D Chip

5.3 Loss of Other Gates on

5.4 Loss of MX02D Chip

6.0 Failure as Shown

6.1 Loss of Gate on Chip

6.2 Loss of MX02D Chip

6.4 Loss of MX02D Chip

6.3 Loss of Other Gates on Chip

Chip

5.0 Failure as Shown

"Off"

R. J. Dallaire ATM501 REV. ALSEP ASE/CE'S 2346700 PAGE 3.9.49. 2 DATE 8 20/70 16 Ch. MUX 2346711 EFFECT CF FAILURE FAILURE CRITIC-PROBABILITY SYSTEM ALITY Q x 10-2 4.0 Output Affected as Shown .00240 5 4.1 One First Tier MOS Chip 4.1 Loss of 4 Channels 4.2 Loss of 12 Channels 5.0 Output Affected as Shown .00600 1 5. l Loss of ! Channel 5.2 Loss of 4 Channels 5.3 Loss of 3 Channels 5.4 Loss of 4 Channels 6.0 Output Affected as Shown .00600 1 6. l Loss of every 4th channel 6.1 Loss of 4 Channels 6.2 Loss of all Channels

6.3 Loss of 12 Channels

6.4 Loss of all Channels

ATM501

TABLE II

END ITEM ASE/CE PAGE 3. 9. 49. 3 2346700 FAILURE MODE, EFFECT & CRITICALITY ANALYSIS DATE A/D Conv.-Analog Bro 8/20/70 2346719 EFFECT OF FAILURE FAILURE CRITIC -CIRCUIT PROBABILITY Q x IC5 ASSUMED FAILURE MODE CAUSE OF FAILURE ALITY END ITEM SYSTEM **FUNCTION** 1.0 Failure of Discrete Parts 1.6 Clock Affected as Shown 1.0 Oscillator-1.0 Oscillator Fails as Shown 1.0 Output Affected as Shown .007313 2 or Integrated Circuits Clock 1. 1 Short or Open R1, R2, R3, R4 1.1 Loss of Clock to Counters 1.1 Oscillator Fails to Provide 1.1 Output will be Frozen R5, C1, C2, Y1, or Failure Output of NGIA, NGIB, NGIC 1.2 Oscillator Frequency Drift 1.2 Counters Will Count at Wrong | 1.1 Output Slightly High or Low 1.2 Crystal (Y1) Parameter Drift Speed 2.0 Input Buffer 2.0 Buffer Fails as Shown 2.0 Failure of I. C. or Capacitor 2.0 Analog Input Affected 2.0 Output Affected as Shown .004507 as Shown 2. 1 Short C4, Failed Output of 2.1 Analog Input Appears High or 2.1 Output all 1's or 0's 2.1 Loss of Input to Comparator LM102 2.2 Offset Input to Comparator 2.2 Input Offset Drift of LM102 2.2 Offset Input Voltage 2.2 Slight Error in Output 2.3 Chance of Small Errors in 2.3 Noise to Input of Comparator 2.3 Open C4 2.3 Occassional Error in Output Conversion 3.0 Comparator 3.0 Comparator Fails as Shown 3.0 Failure of Discrete Parts or 3.0 Ramp Comparison Affected 3.0 Output Affected as Shown .004833 3 (Compares I. C.'s Ramp Voltage to 3, 1 Loss of Command Latch 3.1 Open R5, R13, or short R6, 3. 1 Counters Will Count Erron-3.1 Output will be Random or All Analog Signal C7, or failure of LM111, X5. Input 3.2 Comparator Will Switch too 3.2 LM111 Input Offset Drift 3.2 Count Will be Slightly too High 3.2 Output will be Slightly High or Voltage) Soon or too Late or too Low 3.3 Noise in Comparator 3.3 Open C5 or short R12 3.3 Chance Count Will be Low 3.3 Occasional Slightly Low Output

00

FAILURE MODE, EFFECT & CRITICALITY ANALYSIS

END ITEM ASE/CE DWG NO. 2346700 PAGE 34,9-50

ASE/CE DWG NO. 2346700 PAGE 34,9-50

ASE/CE DWG NO. 2346700 PAGE 34,9-50

ASE/CE DWG NO. 2346719 PAGE 34,9-50

	PAILURE MODE, EFFE	CI & CRITICALITY AN	NALY SIS	A/D Conv Analog Brd No. , 234671	9 ME 8/20/	70
CIRCUIT OR FUNCTION	ASSUMED FAILURE MODE	CAUSE OF FAILURE	EFFECT C	F FAILURE SYSTEM	FAILURE PROBABILITY Q x 10 ⁻⁵	CRITIC-
4.0 Ramp Generator	3.0 Ramp Generator Fails as Shown Shown	4.0 Failure of Discrete Devices or I.C.		4.0 Output Affected as Shown	.017864	l
	4.1 Ramp Generator Will Cease to Function	4.1 Open or Short R8, R9, R10, R11, R14, R15, C3, CR2, Q1 Open R7, or LM107 Failure	4. l Counter Will Not Turn Off	4.1 Output Will Be Random		
	4.2 Incorrect Ramp Slope	4.2 Drift of CR2, R8, R9, R10, R11, C3, or Input Offset Drift of LM107	4.2 Counter Turned Off too Soon or too Late	4.2 Output Slightly High or Low		
	4.3 Excess Current in Zener CR1	4.3 Short R7	4.3-12V Supply May Be Shorted	4.3 Possible Loss of A/D Converter (Will Cause PDU to Switch to Redundant A/D Converter)		
5.0 Power Supply Noise	5.0 On-Board Supplies Affected as Shown	5.0 Failure of Capacitors as Shown	5.0 On-Board Supplies Affected As Shown	5.0 Output Affected as Shown	.000804	5
Suppression	5.1 Loss of -12V or +5V Lines	5.1 Short C8 or C9	5.1 Loss of One MUX - A/D Conv.	5.1 Loss of One A/D Converter		
	5.2 Noise on +12V, -12, or 5V Lines	5.2 Open C6, C7, C8, or C9	5,2 Chance Erroneous Count	5.2 Occasional Output Error		
	5.3 Loss of +12V Line Capacitor	5.3 Short C6 or C7	5,3 No Effect Due to Redundant Capacitors	5,3 No Effect		
6.0 Thermistor Network	6.0 Thermistor Affected as Shown	6.0 Resistor Failures as Shown	6.0 Thermistor Readings Affected as Shown	6.0 A/D Converter Operation not Affected	.000335	- 6
	6.1 Improper Voltage Supplied to Thermistors	6.1 Open or Short R16, R7	6.1 Thermistor Readings Offscale High or Low	6.1 Thermistor Offscale High or Low		
	6.2 Drift in Voltage Supplied to Thermistors	6.2 Drift R16, R17	6.2 Thermistor Readings Slightly High or Low	6.2 Thermistor Slightly High or Low		
			•			

CIRCUIT	FAILURE MODE, EFFE	ECT & CRITICALITY AN	ALYSIS	SYSTEM ALSEP R. J. Dallair. END TEM ASE/CE DWG NO. ASSY A/D Conv Deital Brd DWG NO. F FAILURE	PAGE 3. 9. 50. 2 DATE 8/20/70 FAILURE CRITICS
OR FUNCTION	ASSUMED FAILURE MODE	CAUSE OF FAILURE	END ITEM	SYSTEM	PROBABILITY Q x 10.5 ALITY
1.0 Count Contro	1 Shown	1.0 I.C. Failure 1.1 Failure of NG1, NG2, H1A, H2A, H2B, H1C, X2	1.0 Counter Control Affected as Shown 1.1 Loss of Control to Counters	1.0 Output Affected as Shown 1.1 Output Will be Random	.005900 2
2.0 Count Circu and O Buffer	try As Shown	 2.0 I.C. Failure 2.1 Failure of X4 or X5 2.2 Failure of X6 High 2.3 Failure of X6 Low 2.4 Failure of Buffer Gate High or Low 	2.0 Counters and Buffers Affected as Shown 2.1 Higher Order Bits Frozen 2.2 When Analog Input is Over 5V Counters Will Recycle 2.3 Counters Will Stay at Zero After Reset 2.4 One Bit Erroneous, Other 7 Will Be Okay	 2.0 Output Affected as Shown 2.1 Higher Order Bits Frozen 2.2 An Analog Input of Greater than 5V will Digitally Read Less Than 5V, Analog Inputs Under 5V Will be Unaffected 2.3 Output Always Read Zeros 2.4 One Bit Erroneous 	.009600 1
3.0 Volta Suppl Noise Suppr sion	Shown	3.0 Discrete Parts Failure 3.1 Open R1 or Short C1 3.2 Open C1 or Short R1	3.0 Digital Circuitry Affected as Shown 3.1 Digital Circuitry Will Cease to Function 3.2 Chance Erroneous Count	3. 0 Output Affected as Shown 3. 1 Outputs Will Appear to be All Ones 3. 2 Output Occasionally Erroneous	.005210 3
				,	

FAILURE MODE, EFFECT & CRITICALITY ANALYSIS WORKSHEET

FAILURE MODE, EFFECT & CRITICALITY ANALYSIS WORKSHEET

| ASE/CE | DWG NO. 2346710 | DATE | DAT

	LAILOUT MODE FILLE & CUI	IICALITY ANALYSIS WURKSHEI	16 Ch. Multiplexer 234	46711 8/20	1/70
PART/COMPONENT .		EFFECT OI	FAILURE	FAILURE	CRITIC-
SYMBOL	FAILURE MODE (02)	ASSEMBLY	END ITEM	PROBABILITY Q x 10 ⁻⁵	ALITY
1.0 First Tier Chan- nel Encoders (SN54L20)	1.1 Output of SN54L20 Fails High (.400)	 One First Tier MOS FET Gate in Each of the Four MOS-FET Chips is Always "On". 	1,1 Loss of 12 Channels, (3 of 4 Channels of each First Tier MOS FET Chip will be Lost)	.0012	1**
	1.2 Output of SN54L20 Fails Low (.400)	1.2 One First Tier MOS FET Gate in Each of the Four MOS-FED Chips is Always "Off".		.0012	1
	1.3 Input Fails Open or Short (.200)	1.3 First Tier MOS FET Gate Always "Off".	1.3 Loss of 4 Channels (One Channel From Each First Tier MOS Chip)	.0006	2
2.0 Second Tier Channel Encoders		2.1 Second Tier MOS FET Gate Always "On"	2.1 Loss of 12 Channels (3 of 4 First Tier MOS Chips)	. 0012	1**
(SN54L20)	2.2 Output of SN54L20 Fails Low (.400)	2.2 Second Tier MOS FET Gate Always "Off"	2.2 Loss of 4 Channels (One First Tier MOS Chip	.0012	. 1
	2.3 Input Fails Open or Short (.200)	2.3 Second Tier MOS FET Gate Always "Off"	2.3 Loss of 4 Channels (One First Tier MOS Chip)	.0006	2
3.0 First Tier MOS FET Gate Driver (DM 7800)		3.1 Driven MOS FET Always "Off"	3.1 Loss of 4 Channels (One Channel From Each First Tier Chip)	:0012	1
(DM 1600)	3.2 Output Fails Low (.500)	3.2 Driver MOS FET Always "On"	3.2 Loss of 12 Channels (3 of 4 Channels From Each First Tier Chip)	.0012] **
4.0 Second Tier MOS FET Gate Drivers (DM 7800		4.1 Driver MOS FET Always "Off"	4.1 Loss of 4 Channels (One First Tier MOS Chip)	.0012	1
Differs (DN1100)		4.2 Driver MOS FET-Always "On"	4.2 Loss of 12 Channels (3 of 4 First Tier Chips)	.0012	1**

FAILURE MODE, EFFECT & CRITICALITY ANALYSIS WORKSHEET

SYSTEM ALSEP R. J. Dallaire ATM501 B-3

END ITFM ASE/CE DWG NO. 2346700 PAGE 3.9.51.1/

ASSY DWG NO. 2346711 PATE 8/20/70

PART/COMPONENT		EFFECT O	F FAILURE	FAILURE	CRITIC-
SYMBOL	FAILURE MODE (ac)	ASSEMBLY	END ITEM	PROBABILITY Q × 10 ⁻⁵	ALITY
5.0 First Tier MOS FET (MX02D)	5.1 Short Source-Gate or Any Open (.373)	5.1 Loss of a Gate on Chip	5.1 Loss of 1 Channel	.00317	1
	5.2 Short Drain-Substrate, Source - Substrate, Drain-Gate, or Gate- Substrate (.213)	5.2 Loss of MX02D Chip	5.2 Loss of 4 Channels	.00181	2
,	5.3 Short Drain-Source (.080)	5.3 Loss of Other Gates on Chip	5.3 Loss of 3 Channels	.00068	3.
	5.4 Short Drain-Substrate of Unused Gates (.040)	5.4 Loss of MX02D Chip	5.4 Loss of 4 Channels	.00034	4.
6.0 Second Tier MOS FET (MX02D)	6.1 Short Source - Gate or Any Open(.373)		6.1 Loss of 4 Channels	.00317	, :
	6.2 Short Drain-Substrate, Source- Substrate, Drain-Gate, Drain- Gate, or Gate-Substrate (.213)	6.2 Loss of MX02D Chip	6.2 Loss of All Channels	.00181	2*
	6.3 Short Drain-Souce (.080)	6.3 Loss of Other Gates on Chip	6.3 Loss of 12 Channels	.00068	3**
	6.4 Short Drain-Substrate of Unused Gates (.040)	6.4 Loss of MX02D Chip	6.4 Loss of All Channels	.00034	.1*
		* Single Asterisk Denotes Loss of All 16 Channels.			
		** Double Asterisk Denotes Loss 12 Channels Which Implies the Loss of More than One Geophone Channel.			
		Only Criticality Numbers Having Asterisks are Termed "Serious Failure Modes",			
				•	

(2)

FAILURE MODE, EFFECT & CRITICALITY ANALYSIS WORKSHEET

SYSTEM ALSEP R. J. Dallaige ATM501 B-3

END ITEM ASE/CE DWG NO. 2346700 PAGE 3:945).2:

ASS'Y DY A/D Conv. Analog Bri 2346719 18/20/70

. PA	ART/COMPONENT		EFFECT OF	FAILURE	FAILURE	CRITIC-
	SYMBOL	FAILURE MODE			PROBABILITY Q x 10-5	ALITY
1.0	Oscillator Clock: R1, R2, R3, R4, R5, C1,	1.1 Short or Open R1, R2, R3, R4, R5, C1, C2, Y1, or Failure of NG1A, NG1B, NG1C (.533)	1.1 Oscilaltor Will Fail to Provide Output	1.1 Loss of Clock to Counters	.004313	1
	C2, Y1, NG1A, NG1B, NG1C	1.2 Crystal (Y1) Drift (.371)	1.2 Oscillator Frequency Drift	1.2 Counters Will Count at Wrong Speed	.003000	2
2.0	Input Buffer: LM102, C4	2.1 Short C4, Output LM102 (.776)	2.1 Loss of Input to Comparator	2.1 Analog Input Appears High or Low	.003503	1
		2.2 Input Offset Drift (.193)	2.2 Offset Input to Comparator	2.2 Offset Input Voltage	.000870	2
		2.3 Open C4 (.030)	2.3 Noise to Input of Comparator	2.3 Chance of Small Errors in Conversion	.000134	3
3.0	R12, R13, C5,	3.1 Open R12, R13, Short R13, C5; Failure of LM111, X5 (.798)	3.1 Loss of Command Latch Signal	3.1 Counters Will Count Erroneously	.004020	1
	LM111, X5	3.2 LM111 Input Offset Drift (.140)	3.2 Comparator Will Switch too Soon or too Late	3.2 Count Will be Slightly too High or too Low	.000810	2
	•	3.3 Open C5, Short R12 (.002)	3.3 Noise in Comparator	3.3 Chance Count Will be Low	.000003	3
4. 0	R7, R8, R9, R10 R11, R14, R15,	4.1 Open or Short R8, R9, R10, R11, R14, R15, C3, CR2, Q1, Open R7, or Output Failure of LM107 (.442)	4.1 Ramp Generator Will Cease to Function	4.1 Counter Will Not Turn Off	.009248	1
E CONTRACTOR DE	C3, C12, Q1, LM107	4.2 Drift of CR2, R8, R9, R10, R1, 413)	4.2 Incorrect Ramp Slope	4.2 Counter Turned Off too Soon or too Late	.008631	2
		4.3 Short R7 (.001)	4.3 Excess Current in Zener CR1	4.3 -12V Supply May Be Shorted	.00003	3
5.0	Supply Noise Suppression	5.1 Short C8, C9 (.070)	5.1 Loss of -12V or +5V	5.1 Loss of One MUX-A/D Converter	.000060	2
	C6, C7, C8,	5.2 Open C6, C7, C8, C9 (.798)	5.2 Noise on +12, -12, & +5V Lines	5.2 Chance of Erroneous Count	.000684	1, 1
	C9	5.3 Short C6, or C7 (.070)	5.3 No Effect Due to Redundant Capacitor	5.3 No Effect	.000060	2
6.0	Thermistor Network: R16,	6.1 Open or Short R16, R17 (.817)	6.1 Thermistors Not Supplied Proper Voltages	6. 1 Incorrect Thermistor Outputs	.000274	1
	R17	6.2 Drift R16, R17 (.183)		6.2 Slight Error in Thermistor Outputs	.000061	2

FAILURE MODE, EFFECT & CRITICALITY ANALYSIS WORKSHEET

SYSTEM ALSEP R. J. Dallaire ATM501 EV.

ASE/CE DWG NO.

ASSIY
A/D Conv. Dgital Brd.

DWG NO.

2338900 PAGE 3,9,51,3

DATE 8/20/70

PART/COMPONENT.			EFFECT OF FAILURE			CRITIC-	
SYMBOL	FAILURE MODE	(a)	ASSEMBLY	END ITEM	PROBABILITY Q x 105	ALITY	
1.0 Counter Control Circuitry: NG1, NG2, H1A, H2B, H1C, X2	1.1 Any Failure of Digital Circuitry	(1.00) 1.1	Loss of Control to Counters	1.1 Counters Will Not Change State	.005400	1	
2.0 Counter Circuitry and Output Buffers:	2.1 Failure of Any Stage in Counter	s (631) 2. 1	Higher Order Stages Will Not Change States	2. 1 Higher Order Bits Erroneous	.004800	1	
H2, H1E, H1F, X4, X5, X6	2.2 Failure of X6 High	(.095) 2. 2	Overvoltage Analog Input Will Allow Counters to Overcount	2.2 All Analog Inputs Over 5V Will Digitally Read Less Than 5V All Others Are OK	.000720	3	
-	2.3 Failure of X6 Low	(.063)2.3	Counters Will Stop Counting	2.3 Counters Will Stay At Zero After Reset	.000480	4	
*	2.4 Failure of Output Buffer Gate	(.211) 2. 4	One Bit Will Always Be High or Low	2.4 One Bit Will Be Erroneous All Others Will Be OK	.003600	2	
3.0 Supply Decoupling:	3.1 Open R1, Short C1	(.729) 3. 1	Loss of +5V to Board	3. 1 Outputs Will Appear to be All Ones	.000381	1	
RI, CI	3.2 Open Cl, Short Rl	(.267) 3.2	Noise on -15V Line	3.2 Chance Erroneous Count	.000140	2	

NO.		REV. NO.		
ATM	501	В	-3	
PAGE _	1	OF	5	
DATE	8/6/7	1		

Attachment II

Add to ATM 501-B the following new FMECA work sheets:

Page 3.9.85 3.9.86

3.9.87

3.9.88

AILURE MODE, EFFECTS, AND CR									PAGE3. 9. 85	OF	89 PAGE
SSY FAILURE DESCRIPTION	RELIABILITY GOAL	Berry Electronics	ISSION PHASE(S)	^	1301-S	1	McGinnis	DATE INITIAL REVISION	SUBSYSTEM NAME Active Seismic Experiment	ASSEMBLY N EMI Modifica	AME
PART, COMPONENT, UNIT, CIRCUIT ITEM, SET OR BOX DESCRIPTION	STATEMEN	T OF THE ASSUMED FAILURE	FA	ILURE ODE (a	EFFECT ON ASSEMBLY	SYSTEM EFFECT NUMBER (E)	FAILURE PROBABILITY × 10 ⁵ (Q)	DESIGN COMPENSATION FAILURE MODE	ON PROBABILITY CRITICALITY PRODUCT (a) x (E) x (Q) x	RANK FOR ASSY	RELIABILITY MODEL CODE IDENTIFICATION
Receiver sensitivity Limiting circuitry	Loss of	series diode D6	Open	(0.300)	Degraded mortar impact data	0.010	4.900		0.91470	17	
			Short	(0.700)	Degraded mortar impact data	0.010	4.900	s:	0.03430	15	
	Loss of	parallel diode D7	Open	(0.300)	No effect	0.000	4.900		0.00000	21	
			Short	(0.700)	Loss of mortar impact data	0.046	4.900	· ·	0.15778	6 .	
	Loss of	parallel capacitor cO49	Open	(0.040)	Degraded mortar impact data	0.010	8. 590	•	0.03436	. 14	
			Short	(0.960)	Loss of mortar impact data	0.046	8. 590		0.35420	1,1	
Receiver, Bandwidth Tracking Limiting Circuitry	Loss of	liode D8	Open	(0. 300), 	Loss of one side of Bandwidth Limiting	0.010	4. 900		0.01470 .	17	
			Short	(0.700)	Loss of mortar impact data	0.046	4.900 4.3		0.15778	6	
	Loss of	resistor , R = ,	Open	(0.090) (2.9	Loss of mortar impact data	0.046	9.500		0. 03933	12	
			Short	(0.100)	Loss of one side of bandwidth	g	9. 500		-0.00950	19	
	30 To 10 To		311	(0,134)	limiting	C. LIU	9.600		A.e. 555		
					B (2.73*)	1 A -					

SY FAILURE DESCRIPTION	RELIABILITY	SUPPLIER NAME	MISSION PHASE(S)	IASS	Y DWG OR SK REFERENC	E LODIO	INATOR		PAGE 3. 9. 86		89 7 PAGE
	GOAL	BXA		1	2330399-5Z		McGinnis	ALCITIA I	Active Seismic	EMBLY N E Aodific	MI
PART, COMPONENT, UNIT, CIRCUIT TEM, SET OR BOX DESCRIPTION	STATEMEN	T OF THE ASSUMED PAILUR	E FAILURE MODE	(a)	EFFECT ON ASSEMBLY	SYSTEM EFFECT NUMBER (E)	FAILURE PROBABILITY # 10 ⁵ (Q)	DESIGN COMPENSATION TO ELIMINATE THE FAILURE MODE	PROBABILITY CRITICALITY PRODUCT (a) = (E) = (Q) = 10 ⁵	RANK FOR ASSY	RELIABILITY MODEL CODE IDENTIFICATION
0 MHz events crystal filter	Loss of f	unction .	Open (0.3		Loss of mortar impact data	0.046	20.000		0.30636	3 :	
		* *	Short (0.1		Loss of mortar impact data	0.046	20.000		0.15364	7	
			Drift (0.5	00)	Degraded mortar	0.023	20.000	<i>.</i>	0.30000	4	-
							4		× .		
									A		
		8							***	71	
		*	* * * * * * * * * * * * * * * * * * * *					4.7			
					,						
				.					5		

SY FAILURE DESCRIPTION	RELIABILITY	SUPPLIER NAME	MISSION PHASE(S)		ASSY DWG OR SK REFEREN	CE ORIG	INATOR	DATE	PAGE 3. 9	OF THE REAL PROPERTY.	
	T	BxA			2 3 34794N		McGinnis	INITIAL REVISION	JOBSTSTEM NAME	ASSEMB LY	NAME
ART, COMPONENT, UNIT, CIRCUIT TEM, SET OR BOX DESCRIPTION	STATEMEN	T OF THE ASSUMED FAILURE	FAIL		EFFECT ON ASSEMBLY	SYSTEM EFFECT NUMBER (E)	FAILURE PROBABILITY = 10 ⁵ (Q)	DESIGN COMPENSAT TO ELIMINATE THE FAILURE MODE	PROBABIL CRITICALI PRODUCT (a) = (E) = (TY RANS	MODEL CODE
humper line (3 ea.) Filters FL-LP	The second control of	errite filter: perate line	Open	(0.800)	Loss of thumper	0.046	4.400		0.16192	5 2	
± **			Short (to gnd	1)(0.200)	Loss of thumper	0.046	4.400		0. 04048	11	
	Common	return line	Open	(0.800)	Loss of thumper	0.046	4.400		0.16192	5	
			Short	(0. 200)	Degraded data	0.010	4.400		0.00880	20	
	Thumper	arm line	Short (to gnd) (0.800)	Degraded thump- er data	0.023	4.400		0.08096	9	
			Open	(0.200)	Degraded data	0.010	4. 400		0.00880	, 20	
ortar package assembly line ferrite filters FL-F		MPA Line filters: urvival line	Open	(0.900)	Degraded data	0.023	16.86		0.34900	2	
			Short (to gnd	(0.100)	Loss of MPA	0.046	16.86		0.07756	10	
	1	perate line wr line	Open	(0.900)	Degraded data	0.023	16.86		0.34900	2	
		wr line	Short (to gnd	(0.100)	Loss of experiment	0.067	16.86		0.12814	8	
	and the second s	one of remaining A line filters:	Open/Short Short	(0.900) (0.100)	Degraded data Degraded data	0.023 0.023	16.86 16.86		0.34900 0.03877	2 13	
											1
	1.								l		

12)

	THE RESERVE THE PARTY OF THE PA	MALYSIS WORKSHEET	MISSION PHASE(S)	ASSY DWG OR SK REFEREN				PAGE 37.9.88	OF 7	89 PAGE
331 FAILURE DESCRIPTION	GOAL	SUPPLIER NAME BxA	MISSION PHASE(S)	2334468J	ORIG	INATOR	DATE SU INITIAL REVISION	BSYSTEM NAME A	SSEMBLY N	IAME
PART, COMPONENT, UNIT, CIRCUIT ITEM, SET OR BOX DESCRIPTION	STATEMEN	IT OF THE ASSUMED FAILURE	MODE	EFFECT ON ASSEMBLY	SYSTEM EFFECT NUMBER (E)	FAILURE PROBABILITY # 10 ⁵ (Q)	DESIGN COMPENSATION TO ELIMINATE THE FAILURE MODE	PROBABILITY CRITICALITY PRODUCT (a) x (E) x (Q) x 10	RANK FOR ASSY	RELIABILITY MODEL CODE IDENTIFICATI
A/D Converter Output chokes	Loss of	one of 8 output chokes	Open (0.563)	Degraded data	0.023	1.000		0.01295	18	
**			Short (to gnd) (0.433)	Loss of experiment	0.067	1.000		0.03290	16	
							•	•		
* .										
	-									
	The Control of the Co				*					
					•				1	

NU.		REV.	RU.
ATM	501	В	-3
PAGE _	1	0F	2
DATE	8/6/	71	

Attachment III

Add to ATM 501-B the following new FMECA work sheet:

Page 3.9.89

(6)

FAILURE MODE, EFFECT & CRITICALITY ANALYSIS

SYSTEM
A LSEP Array D
A LSEP Array D
L.S. Moskowitz
ATM501
PAGE 3.9.89 89

PAGE 3.9.89 89

Central Station

OWG NO.

PAGE 3.9.89 89

OATE
7-27-71

PART/COMPONENT			EFFECT O	F FAILURE	FAILURE	CRITIC-
SYMBOL	FAILURE MODE	(oL)	ASSEMBLY .	END ITEM	PROBABILITY Q x 10 ⁻⁵	ALITY
1.0 A/D Converter board No. 1		e ^l la				
C10	Open	. 10	Small increase in EMI noise	Degradation of ASE	.000000157	п
C10	Short	. 90	Pulls +5 volt line to ground	Loss of ASE	. 00000141	1
2.0 A/D Converter board No. 2						e '
L1	Open	.50	Loss of +5 volt line	Loss of ASE	. 00000175	1
L1	Short	.50	Small increase in EMI noise	Degradation of ASE	. 00000175	II ·
3.0 A/D Converter analog assy						
C11	Open	. 10	Small increase in EMI noise	Degradation of ASE	. 000000157	11
C11	Short	.90	Pulls +5 volt line to ground	Loss of ASE	.00000141	1
4.0 ASE/CSE board A4						
· CR102	Open	. 40	Could not reset F/F 19	Loss of thumper	. 0000080	r
CR102	Short	.60	Capacitor C5 would charge too quickly	Possible loss of thumper	.0000120	ī
CR103	Open	.40	Could not insure preset of F/F 19	Possible loss of thumper	. 0000080	I
CR103	Short	.60	Could result in excess current being sunk by 9041 gate	Probably no effect on experiment	. 0000120	п
				·		