

This ATM documents the Failure Modes, Effect and Criticality Analysis on the Bendix designed Power Conditioning Unit for the Array E ALSEP System. The analysis reflects analysis on those parts which are presently planned to be used in final flight configuration. This document is prepared in accordance with the requirements of Section 5.2 of the Reliability Program Plan for Array E, ALSEP-RA-08, Bendix document number BSR 3024 dated 11-30-70.

This document has been revised to reflect the latest engineering changes as presented at the CDR of 14 June 1971. These changes include the following modifications:
(a) Addition of 1 zener diode, 1 resistor and 4 hex inverters to the VR/APM module.
(b) Deletion of 11 wet tantalum capacitors from the Inverter Module.
(c) Modification of the output Filter Module which includes the following:
(1) Reduction of $100 \mu \mathrm{~h}$ inductance coils to $10 \mu \mathrm{~h}$'s.
(2) Change the π type filter for the +29 V line which adds 2 wet slug capacitors in parallel.

ALSEP Reliability Manager

| ATM 952 | A |
| :--- | :--- | :--- |
| PAGE 2 | OF 39 |
| DATE | $6-1-71$ |

1.0 INTRODUCTION

The results of the preliminary Failure Modes, Effects and Criticality Analysis for the ALSEP Array E PCU are documented in this report. The present DVT and planned flight designs retain most of the basic design concepts which have resulted in 100% success on all previous arrays plus the following new features:

1. Complete Redundancy (except switching module)
2. Automatic Power Mangement
3. PCU I Switchback Capability
4. Improved Methods of Heat Sinking

2.0 CIRCUIT DESCRIPTION

Figure l presents a Functional Block Diagram of the Power Conditioning Unit. The redundant circuits are in power standby.

2.1 SWITCHING CIRCUIT

Output voltages are monitored by this circuit. In the event that a serious undervoltage or overvoltage condition should arise, this circuit would automatically switch power to the redundant unit.

2. 2 INVERTER MODULE

The Inverter Module converts the prime 16 VDC power from the RTG to regulated dc outputs for the autotransformer as required.

2.3 SHUNT REGULATOR MODULE

The shunt regulator regulates the +12 VDC output of the PCU by altering the voltage from the RTG to maintain regulation of the +12VDC output which is nearly a fixed load of insignificant magnitude when compared to the 29 VDC line output.

2.4 AUTOMATIC POWER MANGAEMENT

The automatic power management (APM) circuit provides for internal or external dumping of excess reserve power.

PAGE 3 of 39

DATE 6-1-71

2. 5 TRANSFORMER RECTIFIER MODULE

The output of the DC to DC converter are developed and rectified into the specific voltages needed throughout the ALSEP System by the trans former Rectifier Module.

2. 6 OUTPUT FILTERS

The PCU output filters consist of a π type L-C filter for each output power line. Additional filtering is provided on each input and output line to reduce electromagnetic interference.

2.7 SENSING MODULE

The PCU sensing module provides filtering and TM status of RTG input voltage and current. This circuit also monitors the reserve power status and provides for PCU switching in event of unstable condition.

3.0 RELIABILITY PREDICTION

The reliability prediction for the Power Conditioning Unit operating in standby redundant configuration is calculated to be .999837 for launch, deployment and two years of lunar operation. The predicted reliability exceeds the specified goal of .98900 as stated in ATM 889, Section 4.2

Figure 2 shows the various modules which comprise the PCU and the Q's calculated for each module. The Q's for the redundant side of the PCU are calculated using the concept of standby redundancy. The Q's are based on a required two year operating life for the PCU.

The failure probability for each functional component identified in Figure 2 are tabulated in Table I. The probability failures shown represent composite totals derived from the part application stress ratios of each electronic piece part modified by the failure mode apportionment.

Figure 1
Block Diagram of the
Array E
Power Conditioning Unit

Array E PCU Failure Modes,
Effects and Criticality \quad lysis

```
page 5_- 5-
```

\qquad

Figure 2 PCU Reliability Block Diagram

Page 6 of 39

DATE 6-1-71

TABLE I
PROBABILITY FAILURE SUMMARY

Configuration

Sensing Module
Voltage Regulator and APM Module

Inverter Module
Transformer
Rectifier Module

Output Filter Module

Switching Module
. 000579
$Q_{1}=.013925$
$Q_{2}=.000139$

$$
Q_{S}=.004639
$$

Q-Standby
.000022
.000088
. 000013
.000010
.000006

| ATM 952 | A |
| :--- | :--- | :---: |
| Page $\frac{7}{2}$ of 39 | |
| DAte $6-1-71$ | |

3.1 RELIABILITY CALCULATIONS

Figure 2 RELIABILITY MODEL
3.1 .1
$Q_{1}=$ Probability Failure in Operation
$Q_{2}=$ Probability Failure in Standby
$Q_{S}=$ Probability Failure in Switching

$$
Q_{T}=\frac{Q_{1} \cdot Q_{1}}{2}+\frac{Q_{1} \cdot Q_{2}}{2}+Q_{1} R_{2} Q_{S}
$$

$$
Q_{T}=\frac{Q_{1}^{2}}{2}
$$

$$
R_{T}=1-Q_{T}
$$

$$
R_{T}=1-\frac{Q_{1}^{2}}{2}-\frac{Q_{1} \cdot Q_{2}}{2}-Q_{1} R_{2} Q_{S}
$$

ATM 952

Page 8 of 39
Array E PCU Failure Diodes, Effects and Criticality Analysis
3.1 .2

$$
\begin{aligned}
& R_{T}=1-Q_{T} \\
& R_{T}=1-\left(\frac{Q_{1}^{2}}{2}-\frac{Q_{1} \cdot Q_{2}}{2}-\quad Q_{1} R_{2} Q_{S}\right) \underset{\substack{\text { Reliability Equation } \\
\text { for PCU }}}{\text { Rn }}
\end{aligned}
$$

3.1 .3

$$
\begin{aligned}
& Q_{2}=1-R_{2} \\
& R_{2}=1-Q_{2} \\
& R_{2}=1-Q_{2} \\
& R_{2}=.999861 \\
& Q_{1}=.013925 \\
& Q_{2}=.000139 \\
& Q_{S}=.004639 \\
& Q_{T}=\frac{\left(Q_{1}\right)^{2}}{2}+\frac{Q_{1} \cdot Q_{2}}{2}+ \\
& Q_{T}=\frac{(.013925)^{2}}{2}+Q_{1} \cdot R_{2} \cdot Q_{S} \\
& Q_{T}=.000097+
\end{aligned}
$$

3.1.4

$$
\begin{aligned}
& R_{T}=1-Q_{T} \\
& R_{T}=1-.000163 \\
& R_{T}=.999837 \text { Reliability, Redundant for full mission }
\end{aligned}
$$

4.0 FAILURE MODES, EFFECTS AND CRITICALITY ANALYSIS

The failure mode and effects analysis for the PCU are documented in the following FMECA worksheets: These worksheets describe the functional failure modes and the resultant effect. Each identified failure mode is apportioned to a functional circuit and the criticality of each failure is weighted to the failure probability of each circuit reflected by the identified line item. The failure criticality ranking lists the system criticality effect as defined in Table II.

The format of the FMECA analysis is designed to provide the reader with a narrative description of the varying types of failures that could occur, combined with the resultant performance characteristics. This information is useful to system support in performing fault isolation should any anomaly occur.

There are no single point failures in the Array E PCU. Those parts which could be considered single point failures only in the remotest sense of the word are the power switching relay in the switching module and the relay in the sensing module. Both relays are double pole - double throw which cause system failure only in the event that both wiper arms of either relay broke off through mechanical damage.

The failure probability figures were derived from the environmental stress data contained in ATM 957, the PCU Parts Application Analysis. ATM 605A was used to derive the component α apportionments (open, short, etc.) Some failure modes, such as drift of a resistor do not, to a degree, affect the operation of the circuit. The failure modes which do not affect the operation are not included in the FMECA. For this reason, the sum of α^{\prime} s for some circuit/function items do not equal unity.

5.0 RELIABILITY ASSESSMENT

The purpose of performing a reliability prediction and failure mode analysis is to identify inherent design weaknesses. From the results of this analysis it has been concluded that single point failure modes have been eliminated from the PCU design and that the reliability and design objectives have been fully satisified.

TABLEII
CRITICALIIY RANKING CODE
Code
System Effect
I. Loss of system
II. Loss of system control
III. Loss of one experiment
IV. Loss of housekeeping channel(s)
V. Loss of redundant element
VI. Degradation of a redundant element.

FAILURE MODE, EFFECT \& CRITICALITY ANALYSIS

FAILURE MODE, EFFECT \& CRITICALITY ANALYSIS

FAILURE MODE, EFFECT \& CRITICALITY ANALYSIS

FAILURE MODE, EFFECT \& CRITICALITY ANALYSIS

FAILURE MODE, EFFECT \& CRITICALITY ANALYSIS

FAILURE MODE, EFFECT \& CRITICALITY ANALYSIS

FAILURE MODE, EFFECT \& CRITICALITY ANALYSIS

FAILURE MODE, EFFECT \& CRITICALITY ANALYSIS

FAILURE MODE, EFFECT \& CRITICALITY ANALYSIS

FAILURE MODE, EFFECT \& CRITICALITY ANALYSIS

FAILURE MODE, EFFECT \& CRITICALITY ANALYSIS

FAILURE MODE, EFFECT \& CRITICALITY ANALYSIS

FAILURE MODE, EFFECT \& CRITICALITY ANALYSIS

FAILURE MODE, EFFECT \& CRITICALITY ANALYSIS

PART/COMPONENT STMBOL	failure mode		(a)	EFFECT OF FAILURE				FAILURE PROBABILITY $Q \times 10^{-5}$	CRITICALITY	
				ASSEmbLY		END ITEM				
	2.12	R2 open		. 00450	2.12	Minor frequency superimposed on oscillator frequency	2.12	No system effect	0.303	VI
	2.13	R4,R6,R8 open	. 01258	2.13	Loss of oscillator	2.13	Would automatically switch to PCUI	2.894	v	
	2.14	Primary winding or secondary winding opens.	. 006038	2.14	Loss of inverter	2.14	Automatic switching to PCU I	17.517	v	
	2.15	Primary winding or secondary winding shorts.	. 006038	2.15	The 10 KHZ frequency would becom unstable.	2.15	Degraded mode would automatically switch back to PCU I	17.517	v	

FAILURE MODE, EFFECT \& CRITICALITY ANALYSIS

FAILURE MODE, EFFECT \& CRITICALITY ANALYSIS

FAILURE MODE, EFFECT \& CRITICALITY ANALYSIS

PART/COMPOHENT SMMBOL	FAILURE MODE (α)	EFFECT OF FAILURE		$\begin{gathered} \text { FAILURE } \\ \text { PROBABILITY } \\ \text { Q } \times 10^{5} \\ \hline \end{gathered}$	CRITICALITY
		ASSEMBLY	END ITEM		
3. © - 12 Volt Detecto Cincuit	2.3 R17, R18, R21, R22 Open. 0164 2. 4 R3, R4, R21, R15, R16 Open. 000928 2. 5 Kl $\begin{array}{ll}\text { Shorted contact } & .10786 \\ \text { Open contact } & .16868\end{array}$	2. 3 Loss of R17, R18 automatic switching capability, or automatic switching	2.3 Could no longer depend on automatic switching. Would still be able to switch PCU's by command.	5.5992	VI
		2.4 Loss or degradation of Auto switching TM status	2.4 No effect on system operation	4. 1994	vi
		2.5 Loss of all PCU switching	2. 5 System would have to operate with previously energized PCU.	87.580	v
	3.0 Emitter to Collector Short. 1272	3.0 Premature switching of PCU's.	3. 0 Reduces system to single PCU.	41.228	v
	3.1 Q8, Q9 \quad Emitter to Base Open .0259 Collector to Base Open .0259	3. 1 Failure of PCU's to switch on +12 undervoltage condition	3.1 Loss of +12 volt overvoltage detection	16.841	VI
	3. $2 \mathrm{Q} 11 \mathrm{~A}, \mathrm{Q} 11 \mathrm{~B}$ Emitter to Collector Short. 0459 t VRI Short. 1107	3. 2 Would not be able to turn $Q 8$ or $Q 9$ on in event of 12 V undervoltage or overvoltage condition.	3. 2 Would not automatically switch PCU's in event of +12 V overvoltage, undervoltage condition. Would require sending a command to switch PCU's.	14.888	VI

FAILURE MODE, EFFECT \& CRITICALITY ANALYSIS

FAILURE MODE, EFFECT \& CRITICALITY ANALYSIS

PART/COMPONENT SYMBOL	FAILURE MODE (α)	EFFECT OF FAILURE		FAILURE PROBABILITY $Q \times 10^{-}$	CRITICALITY
		ASSEMPLY	END ITEM		
4. $0+5 \mathrm{~V}$ Fault Detector Signal	4. 0 Q14A Shorts Emitter to Collector $.1254$	4. 0 Would result in premature switching to redundant PCU .	4. 0 Would operate in redundant PCU mode of operation. Loss of +5 volt detector circuit.	7.3481	v
		4. 1 Faulty +5 volt signal would not cause automatic switching of PCU's.	4.1 Could command switch to redundent PCU.	4.410	VI
	$\int_{\text {Open }} 4 \text { R40, R41, R42, R43 }$	4. 2 Would preclude automatic switching in event of faulty 5 volt signal.	4. 2 Could command switch PCU's in the event of open condition.	. 3808	vi
$\begin{array}{ll} \because .0 & \text {-12V Fault } \\ \text { Dotictor Signal } \end{array}$	5. 0 Q12A Short Collector to Emitter $.2114$	5. 0 Would lose ability to automatically switch PCU's in event of faulty -12 volt signal.	5. 0 Could command switch to redundant PCU.	8. 4774	VI
	5. 1812 A Emitter to Base Open . 0430 Collector to Base Open . 0430	5. 1 Would result in non switching to redundant PCU.	5. 1 Would operate in redundant PCU mode of operation. \qquad	3.47	v
	5.2 R44, R45, R46, R47 Open . 0698	5. 2 If one of the biasing resistors opened, premature switching of PCU's would occur.	5. 2 Would operate in redundant mode of operation in event open caused premature switching or could attempt command switch back of PCU's.	2. 802	v

FAILURE MODE, EFFECT \& CRITICALITY ANALYSIS

FAILURE MODE，EFFECT \＆CRITICALITY ANALYSIS

PART／COMPONENTSYMBOL	FAILURE MODE		EFFECT OF FAILURE		8183	－71	
			$\begin{aligned} & \text { FAILURE } \\ & \text { PROBABILITY } \\ & Q \times 10^{5} \end{aligned}$	critic－ ALITY			
			ASSEMELY		END ITEM		
$\begin{gathered} 4.0 \mathrm{PCC}:+12 \mathrm{~V} \\ \text { line } \end{gathered}$	$3.3 \mathrm{L3}$	Short． 0315		3． 3 Loss of some ripple filtering Capability on +12 V line．	3． 3 No system effect in that voltage ripple should not be excessive．In event that voltage ripple is excessive，would switch to PCU 2.	0.3293	VI
	$4.0 \mathrm{Cl}, \mathrm{C} 8$	Short． 4400	4．0 Loss of $\div 12 \mathrm{~V}$ line for PCU I	4．0 Switch to PCU 2.	3． 4318	v	
	4.1 C9，C8	Open． 0488	4． 1 Loss of some ripple filtering capability．	4． 1 No system effect in that voltage ripple should not be excessive． In event ripple becomes excessive can switch to PCU 2.	0.3813	VI	
	4． 2 L 4	Open． 3600	4． 2 Loss of +12 volt output line for PCU I．	4． 2 Would switch to PCU 2.	2． 808	v	
	4.3 L 4	Short 0400	4． 3 No appreciable effect．Loss of some ripple damping effect．	4．3 No system effect in that voltage ripple should not be excessive． In event ripple becomes excessive， can switch to PCU 2.	0.3120	VI	
5．0 ロぐく－－5V line	$5.0 \mathrm{Cl1}, \mathrm{Cl} 10$	Short． 5166	5． 0 Loss of -5 V output line for PCU I．	5．0 Switch to PCU 2.	5． 0110	v	
	$5.1 \mathrm{Cl1}, \mathrm{C10}$	Open． 0574	5．1 Loss of some voltage ripple filtering capability	5． 1 No system effect in that voltage ripple should not be excessive． In event ripple becomes excessive can switch to PCU 2.	0． 5567	VI	
	$5.2 \mathrm{~L} 5$	Open 3054	5． 2 Loss of +5 volt output line for PCU I．	5． 2 Would switch to PCU 2.	2． 9625	v	
	5．3 L5	Short． 0339	5． 2 No appreciable effect．Loss of some ripple damping effect．	5． 3 No system effect in that voltage ripple should not be excessive．In event ripple becomes excessive can switch to PCU 2.	0． 3291	VI	

FAILURE MODE, EFFECT \& CRITICALITY ANALYSIS

			EFFECT OF FAILURE			1-71
PART/COMPONENT SYMBOL	FAILURE MODE (α)				failure PROBABILITY 0×10^{-5}	CRITICALITY
			ASSEMBLY	END ITEM		
$\begin{aligned} & 6.0 \text { PCU I }-12 \mathrm{~V} \\ & \text { line } \end{aligned}$	$6.0 \mathrm{Cl3}, \mathrm{Cl2}$	Short. 3456	6.0 Loss of -12 V output line for PCU I.	6.0 Switch to PCU 2.	5.0110	V
	6.1 C13, C12	Open .0384	6. I Loss of some voltage ripple filtering.	6.1 No system effect in that voltage ripple should not be excessive. In event ripple becomes excessive can switch to PCU 2.	0. 5567	VI
	$6.2 \mathrm{L6}$	Open. 3054	6.2 Loss of -12 volt output line for PCU	6.2 Would switch to PCU 2.	2. 9625	v
	6.3 L 6	Short. 0339	6.3 No appreciable effect. Loss of some damping effect.	6.3 No system effect in that voltage ripple should not be excessive. In event ripple becomes excessive can switch to PCU 2.	0.3291	VI
7. 0 Regulator 2 internal dump	7.0 C15, Cl 4	Short 686	7.0 Lose capability to dump excessive reserve power internally to $P C U$.	7. 0 Requires switching to PCUI.	5.928	v
	$7.1 \mathrm{Cl5}$,	Open .075	7.1 Loss of some ripple filtering capability.	7.1 No system effect in that excessive current should not be great enough to damage dump resistors.	0.6587	VI
	7. 2 L 7	Short .0144	7. 2 No appreciable effect. Loss of ripple dampening effect.	7.2 No system effect.	0.3153	VI
	7.3 L 7	Open 1296	7. 3 Could not dump excess reserve power internally.	7.3 Would require switching to PCUI.	2. 8383	v
8. 0 APM 2 External Dump	8.0 LI2	Open 1296	8. 0 Loss of external power dump for PCU 2.	8.0 Switch to PCU I.	2, 8383	v
	$\begin{array}{ll} 8.1 & \mathrm{~L} 12 \\ 8.2 & \mathrm{C} 23 \end{array}$	Short . 0144	8. 1 No appreciable effect. Loss of ripple dampening effect.	8. 1 No system effect in that excessive current should not damage dump		
		Short. 2628	8. 2 Would be unable to use APM 2 ext. dump.	8. 2 Would switch to redundant PCU.	$\begin{aligned} & 0.3153 \\ & 5.262 \end{aligned}$	$\begin{aligned} & \mathrm{VI} \\ & \mathrm{VI} \end{aligned}$
	8.3 C23	Open. 0292	8. 3 No effect.	8.3 No system effect	2.5052	V

FAILURE MODE, EFFECT \& CRITICALITY ANALYSIS

PART/COMPONENT SYMBOL .	FAILURE MODE ($\boldsymbol{\alpha}$)		EFFECT OF FAILURE		$\begin{gathered} \text { FAILURE } \\ \text { PROBABILITY } \\ 0 \times 10^{-5} \\ \hline \end{gathered}$	$\begin{aligned} & \text { CRITIC- } \\ & \text { ALITY } \end{aligned}$
			ASSEMBLY	END ITEM		
$\begin{aligned} & 9.0 \text { PCU } 2-12 \mathrm{~V} \\ & \text { line } \end{aligned}$	9.0 C17, C16	Short. 4539	9.0 Loss of -12V output line for PCU II.	9.0 Switch to PCUI.	3.6265	v
	9.1 C17, Cl 16	Open. 0504	9. 1 Loss of some voltage ripple filtering	9.1 No system effect in that voltage ripple should not be excessive. In event ripple becomes excessive can switch to PCUI.	0.4029	VI
	9.2 L8	Open. 3710	9. 2 Loss of -12 volt output line for PCU 2	9. 2 Switch to PCUI.	2. 9644	v
	9. $3 \mathrm{L8}$	Short. 0412	9. 3 No appreciable effect. Loss of some ripple dampening effect.	9.3 No system effect in that voltage ripple should not be excessive. In event ripple becomes excessive, can switch to PCUI.	0.3293	VI
$\begin{gathered} \text { 10. } 0 \mathrm{PCU} 2+5 \mathrm{~V} \\ \text { line } \end{gathered}$	10.0¢19, C18	Short. 5166	10.0 Loss of +5 V output line for PCU II.	10.0 Switch to PCU I.	5.0110	v
	10.1 C 19, C18	Open . 0574	10. 1 Loss of some voltage ripple filtering capability.	10. 1 No system effect. If ripple becomes excessive can switch to PCUI.	0.5567	VI
	10.219	Open 3054	10. 2 Loss of +5 voit output line for PCU 2 .	10.2 Switch to PCU I.	2.9625	v
	10.3 L9	Short. 0574	10. 3 No appreciable effect.	10. 3 No system effect. If ripple becomes excessive, can switch to PCU I.	0.3291	VI
$\begin{aligned} & \text { 11. 0PCU } 2+12 \mathrm{~V} \\ & \text { line } \end{aligned}$	11.0C21, 620	Short. 4400	11.0 Loss of +12 V output line for PCU II.	11.0 Switch to PCU I,	3.4318	v
	11.1¢21, C20	Open 0488	11.1 Loss of some voltage ripple filtering capability.	11. I No system effect in that ripple voltage should not be excessive. In event ripple becomes excessive, switch to PCUI.	. 3813	VI

FAILURE MODE, EFFECT \& CRITICALITY ANALYSIS

FAILURE MODE, EFFECT \& CRITICALITY ANALYSIS

FAILURE MODE, EFFECT \& CRITICALITY ANALYSIS

FAILURE MODE, EFFECT \& CRITICALITY ANALYSIS

	FAILURE MODE (α)	EFFECT OF FAILURE TRANS/REC		万ar	15-71
PART/COMPONENT SYMBOL				$\begin{gathered} \text { FAILURE } \\ \text { PROBAB1LITY } \\ Q \times 10^{5} \\ \hline \end{gathered}$	CRITICALITY
		ASSEmaly	END ITEM		
$\begin{aligned} & \text { 1.0 DC-DC Converted } \\ & \text { PCUI } \end{aligned}$	1.0. CR1, CR2 Open .0642	1.0 If either diode opens, would result in intermittent +29 V being supplied in 50 M second intervals from PCU I.	1.0 Would require switching to PCU 2.	24.515	- V
	1.1 CR1, CR2 Short . 0642	If either diode shorts would result in loss of diode isolation protection.	1.1 No system effect.	24,515	vi
$\begin{aligned} & 2.0 \mathrm{DC}-\mathrm{DC} \text { Converte } \\ & \text { PCU } 2 \end{aligned}$	2.0 CR1, CR2 Open $\quad .0642$	2. 0 If either diode opens, would result in intermittent +29 V being supplied in 50 M second increments from PCU 2 .	2.0 Would require switching to PCU I.	24. 515	v
	$2.1 \mathrm{CR1}$, CR2 Short . 0642	2. 1 If either diode shorts, would result in loss of diode isolation protection.	2. 1 No system effect	24.515	vi
3.0 DC-DC Converte PCU I	$\left\|\begin{array}{rrr} 3.0 & \text { CR5, CR6, CR7, CR8, CR9, CRI0 } \\ & \text { Open } .1787 \\ 3.1 \text { CR5, CR6, CR7, CR8, CR.9, CR10 } \\ & \text { Short. } 1787 \end{array}\right\|$	3. 0 Any open would result in intermittent $+5 \mathrm{~V}+12 \mathrm{~V}$, or -12 V supply from transformer Tl of PCUI.	3.0 Would require switching to PCU 2 .	68. 263	v
		3.1 Diode short would result in loss of diode isolation protection for the associated power line.	3.1 No system effect	68.263	vi
$\begin{gathered} \therefore 0 \text { DC-DC Converte } \\ \text { PCU } 2 \end{gathered}$		4. O Any open would result in intermittent $+5 \mathrm{~V},+12 \mathrm{~V}$, or -12 V supply from transformer T2 of PCU 2.	4.0 Would require switching to PCUI.	68. 263	v
		4.1 Any open would result in intermittent $+5 \mathrm{~V},+12 \mathrm{~V}$ or -12 V supply from transformer T2 of PCU 2.	4.1 No system effect	68.263	VI

FAILURE MODE, EFFECT \& CRITICALITY ANALYSIS

