

BENDIX SYSTEMS DIVISION ANN ARBOR, MICH.

Heat Flow Experiment

NO.	TM-43	0 REV	. NO.	
PAGE	1	OF	2	PAGES

This ATM is submitted to comply with Action Item B6-0721-12B, Herbert to Kenney. This item was assigned during the MSC meeting of 21-July-66 held at The Bendix Systems Division, Ann Arbor, Michigan.

"Bendix Systems to supply MSC with a break down on weight estimates for the heat flow experiment." The elemental weights based on the study became available 7-26-66. This concept has a definite weight problem. A meeting has been scheduled with the principle investigator to review his performance requirements to reduce the weight to 8.0 pounds maximum.

Prepared b

W.E. Johnson

Approved by

Jack E. Dye

Bendix 2

28-July-66

BENDIX SYSTEMS DIVISION ANN ARBOR, MICH.

Heat Flow Experiment

	REV. NO.
ATM-430	
	,
PAGE 0	F 2 PAGES

Weight Estimate for the Heat Flow Experiment

The following estimate is based on the dual static probe. This estimate is predicated on using 3 dual probes. Each dual probe consists of two temperature gradient bridges four two level conductivity heaters, four conductivity bridge sensors, and four thermal sensors located along the probe cable.

Unit	Qty.	Weight (lbs.)	
Dual Probe and Cable	3	1.5	
Probe Container	1	2. 2	
Probe Electronics	3	6.3	
Central Electronics	1	1.9	
Electronics cables			
and Reels (30 foot -			
30 conductors)	3	3.0	
		14.9 (specification	
		8 0 pounds	
		mayimum)	