Calibration Information for Experiments 71-063A-10 and 72-031A-09

January 1973

This document consists of a temperature correction procedure supplied by Dr. Paul Bjockholm of

American Science and Engineering, Inc., Cambridge, Massachusetts

TEMPERATURE CORRECTIONS

In order to overlay data from different detectors and temperatures, it is necessary to compensate for gain and bias difierences. An alpha particle of energy E stopping in the $i^{\text {th }}$ detector produces a count in channel number N according to the formula

$$
N=(E-B(i, T) V G(i, T)-256
$$

where the gain of the $i^{\text {th }}$ detector at temperature T if fitted to the quadratic form

$$
G(1, T)=G_{0}(1)+G_{1}(1) T+G_{2}(1) T ?
$$

and the bias is

$$
B(i, T)=B_{0}(i)+B_{1}(i) T+B_{2} \text { (i) } T^{2}
$$

The coefficients G_{0}, G_{1}, etc. were calculated from datiz obtained in laboratory tests using $\mathrm{Am}^{241}(E=5.486 \mathrm{Mev})$ and $\mathrm{Cm}^{242}(E=6.115)$ test sources. The values obtained are given in Table III. The temperature, measured in ${ }^{\circ} \mathrm{C}$, was monitored by averaging the readings of two sensors attached to the cases of detectors 5 and 6 . There is also avatlable a temperature measurement at the low voltage power supply.

TABLE III Temperature Correction Coefficients
A. Apollo 15

DET	GO		G1	G2
1	. 016511		$1.11682 \mathrm{E}-5$	1.20094E-8
2	1.63657E-2	66^{-2}	3.6829E-6	8.69821E-7
3	$1.68476 \mathrm{E}-2$		$1.52701 \mathrm{E}-5$	-1.94532E-7
4	. 0162362		6.8508E-6	$8.04508 \mathrm{E}-7$
5	$1.65868 \mathrm{E}-2$		8.1722E-6	4.30857E-7
6	$1.67374 \mathrm{E}-2$		1.38262E-5	-9.95569E-8
7	$1.66394 \mathrm{E}-2$		8.02561E-6	5.14025E-7
8	$1.69597 \mathrm{E}-2$		$1.1784 \mathrm{E}-5$	1.29059E-8
9	. 0160482		$6.30958 \mathrm{E}-6$	$1.3558 \mathrm{E}-6$
10	. 016149		5.07239E-6	$1.4812 \mathrm{E}-6$

DET	BO
1	.454456
2	.490183
3	.366534
4	.52963
5	.449883
6	.405481
7	.422976
8	.344155
9	.593791
10	.579663

> B 1
> $-2.41821 \mathrm{E}-3$
> $-6.31298 \mathrm{E}-4$
> $-3.30801 \mathrm{E}-3$
> $-6.33949 \mathrm{E}-4$
> $-1.09982 \mathrm{E}-3$
> $-1.70306 \mathrm{E}-3$
> $-1.63199 \mathrm{E}-3$
> $-3.29596 \mathrm{E}-3$
> $-9.1772 \mathrm{E}-4$
> $-1.23281 \mathrm{E}-3$

B. Apollo 16

$\mathrm{BO}(1)=3.23599 \mathrm{E}-01$
$\mathrm{BO}(6)=2.09999 \mathrm{E}-03$
$\mathrm{Bl}(1)=8.89399 \mathrm{E}-03$
$\mathrm{B1}(6)=-8.87499 \mathrm{E}-03$
$B 2(1)=0.00000 \mathrm{E}+00$
$\mathrm{B} 2(6)=5.86799 \mathrm{E}-04$
$\mathrm{GO}(1)=1.67799 \mathrm{E}-02$
$\mathrm{GO}(6)=1.78699 \mathrm{E}-02$
G1 (1) $=-1.42899 \mathrm{E}-05$
G1 (6) $=3.17799 \mathrm{E}-05$
G2 (1) $=0.00000 \mathrm{E}+00$
$\mathrm{G} 2(6)=-1.63799 \mathrm{E}-06$
$B 0(4)=2.97099 \mathrm{E}-01$
$\mathrm{BO}(9)=4.10599 \mathrm{E}-01$
B1 (4) $=-2.27099 E-03$
B1 (9) $=-4.85999 E-04$
$\mathrm{B} 2(4)=1.48999 \mathrm{E}-04$
B2 (9) $=-1.44499 \mathrm{E}-05$
$\mathrm{GO}(4)=1.69599 \mathrm{E}-02$
$G 0(9)=1.66499 \mathrm{E}-02$
$\mathrm{G1}(4)=1: 30999 \mathrm{E}-05$
$\mathrm{G1}(9)=4.61899 \mathrm{E}-06$
G2 (4) $=-2.51299 \mathrm{E}-07$
1 $\mathrm{G} 2(9)=3.23799 \mathrm{E}-07$
$\mathrm{BO}(2)=4.84999 \mathrm{E}-01$
$\mathrm{BO}(7)=3.20999 \mathrm{E}-01$
$\mathrm{B1}(2)=2.13199 \mathrm{E}-03$
$\mathrm{B1}(7)=8.69499 \mathrm{E}-03$
$\mathrm{B2}(2)=-2.71499 \mathrm{E}-04$
$\mathrm{B2}(7)=0.00000 \mathrm{E}+00$
$\mathrm{G0}(2)=1.63499 \mathrm{E}-02$
$\mathrm{G0}(7)=1.70899 \mathrm{E}-02$
$\mathrm{G1}(2)=-5.79999 \mathrm{E}-06$
$\mathrm{G1}(7)=-1.86499 \mathrm{E}-05$
$\mathrm{G} 2(2)=1.17399 \mathrm{E}-06$
$\mathrm{G} 2(7)=0.00000 \mathrm{E}+00$

```
BO(5) = 3.4799E-01
BO(10) = 2.98599E-01
B1 (5) =-1.53999E-03
B1 (10) =-3.21599E-03
B2(5) =-2.94999E-06
B2(10) = 6.36599E-05
G0(5) = 1.68099E-02
G0(10) = 1.70099E-02
G1(5) - 9.64799E-06
G1(10) = 1.28899E-05.
G2(5) = 2.53399E-07
G2(10) = 7.73999E-08;
```

$\mathrm{BO}(3)=4.02099 \mathrm{E}-01$
$\mathrm{B} 0(8)=3.89899 \mathrm{E}-01$
$\mathrm{BI}(3)=-9.74999 \mathrm{E}-04$
$\mathrm{B} 1(8)=-2.26199 \mathrm{E}-03$
B2 $(3)=-1.53099 E-05$
$\mathrm{B} 2(8)=-6.74099 \mathrm{E}-05$
$\mathrm{G0}(3)=1.66299 \mathrm{E}-02$
$\mathrm{GO}(8)=1.66499 \mathrm{E}-02$
$\mathrm{G1}(3)=6.61199 \mathrm{E}-06$
$G 1(8)=9.49499 \mathrm{E}-06$
$\mathrm{G} 2(3)=3.47299 \mathrm{E}-07$
$\mathrm{G} 2(8)=4.97799 \mathrm{E}-07$

