Introduction

14076 was one of 7 small rocks collected from the bottom of a 30 cm deep trench (see 14149) at station G, Apollo 14, located about 3 crater diameters from Cone Crater (Swann et al. 1977). It has two distinct lithologies with sharp contact; one is brownish like most other Apollo 14 soil breccias, and one is grayish and very aluminous. The aluminous lithology is thought to be an exotic highland regolith and is quite unusual when compared with other Apollo 14 breccias.

The aluminous part of 14076 is found to have large glass spheres and fragments of HASP (Vaniman 1990) and tiny glass spheroids of GASP (Warren 2008). A new lunar mineral, yoshiokaite, is also reported in this lithology.

Petrography

The aluminous part of Apollo 14 regolith breccia 14076 has been found to contain a diverse suite of complementary silicate condensates (figures 4 and 5). A early description of this rock is reported in Jerde et al. (1990) “the finer-grained end - - - contains only 5-
10% clasts > 0.5 mm across. In contrast, the coarser-grained end contains ~ 30% clasts. The matrices were also noted to be of different colors: “medium brown-grey in one lithology and “light medium grey” in the other”.

Jerde et al. (1990) and Wentworth and McKay (1991) showed that the light-grey portion of 14076 was highly aluminous when compared with other Apollo 14 samples. The maturity index (Is/FeO) is low, perhaps due to growth of iron grains (Jerde et al. 1990).

The thin section of the light-grey lithology (14076,1) contains at least four large more-or-less intact spherules and many smaller object that appear to be broken spherules. The thin section lacks recognizable agglutinates, has only moderate porosity, and all of its glasses have been extensively devitrified (Jerde et al. 1990). Several unusual (devitrified) glass types are present: One common type is similar to HASP, seen before in some Apollo 16 samples. A new Ca, Al rich silicate mineral termed “Yoshiokaite” is has been found in this lithology. Most recently Warren et al. (2007) and Warren (2008) have reported tiny spheres and large masses of complementary Si- and Fe-rich glass, dubbed GASP (table 1, figure 5). These supposed condensates are not unlike the volatile-rich alumina poor glasses and coatings first observed by Keller and McKay (1992) in an Apollo 16 soil (61181).

**HASP:** HASP stands for high-alumina, silica-poor glass and has been seen before (Nancy et al. 1976). It is, perhaps, the residue of high-temperature vaporization of lunar highland material.

**GASP:** GASP stands for gas-associated spheroidal precipitates (Warren et al. 2007).

**VRAP:** VRAP is an acronym that stands for volatile-rich alumina poor condensates (Keller and McKay 1992).
**Yoshiokaite:** Vaniman and Bisch (1990) reported a new Ca, Al-silicate mineral in the aluminous part of 14076. It occurs as shocked crystal fragments in devitrified highly-aluminous glasses. It has a hexagonal nepheline-like structure and is metastable. Analyses of yoshiokaite are given in table 1.

**Chemistry**
There are three analyses of different parts of 14076 (Table 1). The brownish lithology has high trace element content and is very like other Apollo 14 regolith breccias.

However, the grayish, aluminous lithology of 14076,1 is low in trace element content. It has significant Ir and Au and is thought to be a sample of a highland regolith (Warren 2008). The grayish, aluminous lithology is found to be exotic to Apollo 14 and low in trace element content (figure 3). It is somewhat similar to the Apollo 16 soils (except that they do not have abundant HASP).

The third analysis by Jerde et al. (1990) is of a small clast in 14076.

**Processing**
14076, along with parent soil 14149, was returned in documented bag #20 in ALSREC 1006. Figure 6 shows how 14076 was divided. Documentation of the splits and their respective thin sections is found in the papers by Warren, Jerde etc.

**Compilers note:** It would seem that one should search all samples with HASP, for small spheroids of GASP and/or thin coatings of VRAP. One can only guess what the next acronym will be!
Table 1. Chemical composition of 14076.

<table>
<thead>
<tr>
<th>reference</th>
<th>Jerde et al. 1990</th>
<th>Warren08Keller92</th>
<th>Warren08</th>
<th>Vaniman90</th>
<th>GASP</th>
<th>HASP</th>
<th>VRAP</th>
<th>Yoshiokaite</th>
</tr>
</thead>
<tbody>
<tr>
<td>weight</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiO2 %</td>
<td>44</td>
<td>47.7</td>
<td>(c) 86.6</td>
<td>26</td>
<td>64</td>
<td>18.2</td>
<td>28</td>
<td>22.6</td>
</tr>
<tr>
<td>TiO2</td>
<td>0.33</td>
<td>1.6</td>
<td>0.88</td>
<td>(c) 0.03</td>
<td>0.7</td>
<td>0.08</td>
<td>0.07</td>
<td>0.02</td>
</tr>
<tr>
<td>Al2O3</td>
<td>30.4</td>
<td>18.3</td>
<td>24.2</td>
<td>(c) 0.38</td>
<td>45</td>
<td>1</td>
<td>51.9</td>
<td>45.9</td>
</tr>
<tr>
<td>FeO</td>
<td>3.78</td>
<td>9.5</td>
<td>6.2</td>
<td>(c) 7.64</td>
<td>1.8</td>
<td>25</td>
<td>0.02</td>
<td>0.18</td>
</tr>
<tr>
<td>MnO</td>
<td>0.058</td>
<td>0.13</td>
<td>0.075</td>
<td>(c) 0.16</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td>3.33</td>
<td>10.3</td>
<td>5.3</td>
<td>(c) 4.5</td>
<td>5.5</td>
<td>1.9</td>
<td>0.41</td>
<td>0.98</td>
</tr>
<tr>
<td>CaO</td>
<td>16.8</td>
<td>11</td>
<td>14.4</td>
<td>(c) 0.55</td>
<td>21</td>
<td>1.3</td>
<td>28.8</td>
<td>25.5</td>
</tr>
<tr>
<td>Na2O</td>
<td>0.44</td>
<td>0.74</td>
<td>0.59</td>
<td>(c) 0.03</td>
<td>1</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>K2O</td>
<td>0.088</td>
<td>0.65</td>
<td>0.26</td>
<td>(c) 0.02</td>
<td>2.9</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>S % sum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sc ppm 7.8 20.3 12.7 (a)
V 17 37 34 (a)
Cr 500 1250 880 (a)
Co 15.8 36 20.1 (a)
Ni 231 370 234 (a)
Cu 6.9 33 (a)
Zn 10.8 6.7 3.1 (a)
Ge ppb 260 (b)
As
Se
Rb 3.7 16 6.8 (a)
Sr 175 189 150 (a)
Y 108 1060 470 (a)
Zr
Nb
Mo
Ru
Rh
Pd ppb
Ag ppb
Cd ppb
In ppb
Sn ppb
Sb ppb
Te ppb
Cs ppm 0.146 1.8 0.25 (a)
Ba 90 850 350 (a)
La 8 80 31 (a)
Ce 18.2 192 80 (a)
Nd 11.9 119 47 (a)
Sm 3.17 32.2 12.5 (a)
Eu 1.09 2.7 1.47 (a)
Gd Tb 0.67 6.6 2.8 (a)
Dy 4.2 43 16.3 (a)
Ho 0.73 3.5 (a)
Er
Tm
Yb 2.5 24 9.9 (a)
Lu 0.34 1.37 3.5 (a)
Hf 2.22 26.4 9.9 (a)
Ta 0.29 2.9 1.1 (a)
W ppb
Re ppb 0.54 (b)
Os ppb 7.3 (b)
Ir ppb 8 12.6 11.3 (b)
Pt ppb
Au ppb 8.8 8 8 (b)
Th ppm 1.34 14.1 6.2 (a)
U ppm 0.34 3.4 1.6 (a)

Technique: (a) INAA, (b) RNAA, (c) e. probe, fused bead, (d) elec. Probe
References for 14076


