14321 Clast-rich, Crystalline Matrix Breccia 8998 grams

Figure 1: Photograph of 14321,0 after cutting illustrating clastic nature. Note crumbly nature which led to many processing fines. NASA# S71-28403. Cube is 1 inch.

Introduction

Based on a stated desire of scientists interested in studies of the interaction of cosmic ray radiation with the lunar surface, the Apollo 14 astronauts collected several "football-sized" rocks, the largest of which was 14321 (which came to be known as Big Bertha). It was collected from near the edge of Cone Crater and is generally interpreted as a piece of the Fra Mauro Formation (Wilshire and Jackson 1972, Swann et al. 1972, 1977).

The "life and times" of Big Bertha were initially discussed in detail in a series of papers by Grieve et al. (1975), Duncan et al. (1975a, 1975b) and Morgan et al. (1975). These studies showed that 14321 was a clastic rock with a variety of lithic and microbreccia clasts (figures 1 - 5). The classification of fragmental

breccias from the Fra Mauro Formation was reviewed by Simonds et al. (1977), who found that it was a crystalline matrix breccia (CMB) with about 30% clasts. Warner (1972) placed it in group 4, Chao (1972) group 2b, Wilshire and Jackson (1972) group F4 of their schemes of classification. Wilshire and Jackson suggest that F4 breccias were from the bottom part of the Fra Mauro Formation.

Kohl et al. (1978) showed that the depth profiles in 14321 for ⁵³Mn and ²⁶Al could be explained using the same parameters for cosmic rays as used for 14310 and 68815.

Two breccia guidebooks were prepared (Meyer and King 1979, Shervais et al. 1984), and these led to many studies of the breccia clasts. Shervais et al., in particular, gave an excellent review of what had been learned about this important breccia up to that point.

note: 14321 has so many studies that they simply can't all be included in this compilation. Sorry!

Figure 2: Photograph of initial saw cut through 14321. This is the west face of 14321,37. The white clast is W1 (c2). The scale is in cm. NASA photo S78-33119.

The age of the Fra Mauro Formation and Imbrium Event is about 3.85 ± 0.02 b.y. (see review by Stöffler and Ryder 2001). The clasts in Apollo 14 breccias must necessarily be older than the event that created the breccias, and indeed such was found to be the case (see below). Conversely, the age of Imbrium must be younger than the youngest clast found included in the breccias, if these breccias were indeed formed by this event (Stadermann et al. 1991)!

The trace siderophile composition of the various lithologies of 14321 indicate that the last lithification event did not contribute significant additional meteoritic material.

Petrography

The breccia matrix was studied by SEM petrography by Lally et al. (1972) and Phinney et al. (1977). The matrix is mostly crystalline with grain size 1-5 microns and microvoid space 15-20% (figure 5). Phinney et al. describe the matrix as crystalline, moderately coherent and the result of sintering in hot ejecta blanket

Figure 3: Photo of 14321,1408 illustrating light breccia matrix with dark aphanitic breccia clasts. Cube is 1 cm. Photo # S86-26402.

Figure 4: Photo #S85-36423 of 14321,46 illustrating large white troctolite clast (W-101, c1) and large basalt clast (B-102). Cube is about 1 cm.

Figure 5: Thin section photomicrograph of breccia matrix of 14321,208. Note breccia-in-breccia texture and serate nature of matrix. Field of view is $\sim 1 \text{ cm}$. NASA photo # S71-39078.

without digestion of clasts. On the other hand, Lally et al. attribute the recrystallization of the matrix as due to "shock sintering". It should be noted that the rock proved to be quite "crumbly" during processing (figure 1).

Wilshire and Jackson (1972) and Grieve et al. (1975) found that 14321 was clast-rich with lithic clasts greater than 1 mm making up more than 30% of the rock. They noted that, in general, the clasts had not reacted with, nor been significantly resorbed by, the matrix. Some clasts are quite large and have received much attention (see below), but most are themselves microbreccias of the approximate same composition as the whole (albeit a darker color). The majority of the non-breccia clasts are aluminous basalts (some quite large). Some are referred to as olivine vitrophyre (Allen et al. 1979). Only a small number of possibly-pristine "plutonic" rock fragments were found (figure 4) and none of these were found to be "norite" nor "ferroan anorthosite" (*sensostricto*).

Lindstrom et al. (1972) and Duncan et al. (1975) found that the dark, microbreccia clasts contained more rareearth-elements (La = 78 - 112 ppm) than the light matrix material (La = 27 - 51 ppm). The dark microbreccia also was found to contain small clasts of

Lunar Sample Compendium C Meyer 2009 "micro norite" (Grieve et al. 1975), although no large clasts of this material were found.

Significant Clasts

Breccia 14321 has proven to be a treasure chest of important rock clasts from the crust of the moon, but the information for various clasts extracted from 14321 is spread out in the literature. Some clasts were large enough for analysis by several techniques (see table 4

Figure 6: Composition of mafic minerals found as individual fragments in matrix of 14321 (data replotted from Simonds et al. 1977, Stoffler and Knoll 1977).

Figure 7: Photomicrograph of thin section of large basalt clast B-102 from 14321,46 (Meyer and King 1979).

for cross-correlation). Many small clasts are seen in thin section (figure 5).

Taylor et al. (1972) and Ware and Green (1977) reported on a troctolite clast as well as two basalt clasts. Wänke et al. (1972) determined the matrix composition as well as two igneous clasts. Allen et al. (1979) and Shervais et al. (1988) reported on olivine vitrophyre clasts in 14321. Shervais et al. (1983, 1985) analyzed 11 clasts and studied thin sections of them. Lindstrom et al. (1984) studied 7 additional clasts, including magnesian anorthosite, troctolite and "dunite". Dickinson et al. (1985) studied basalts from the processing fines. But Paul Warren made the most fuss, so we shall start with his observations:

c1 (W-101) from ,46 and ,116

Warren et al. (1981) reported that this large (18 x 12 mm) anorthositic troctolite was about 60% plagioclase (An_{96}) and 40% olivine (Fo₈₈), with trace orthopyroxene and diopside (figure 4). Apparently a second piece of this same clast was also studied by Lindstrom et al.

Figure 8: Composition of pyroxene and olivine in basalt fragments in 14321. Data replotted from many sources including Shervais et al. (1985).

Figure 9: Thin section photomicrograph of olivine vitrophyre clast in 14321 (this is figure 1b from Allen et al. 1979). Field of view is 0.5 mm.

(1984) and Shervais and McGee (1998). Warren et al. found it to be pristine (Ir = 0.053 ppb).

c2 (W-1) from ,37

Warren et al. (1981) studied this clast of anorthositic troctolite. It is mostly plagioclase (An_{95}) with some olivine (Fo_{87}) and trace ilmenite and chromite! Ir = 0.031.

Figure 10: Plagioclase and mafic mineral composition of troctolite and anorthosite clasts in 14321 (data painfully extracted from Warren et al. 1981, 1983a,b, Ware and Green 1977, Lindstrom and Shervais 1984). Note the fields for known lunar plutonic rocks (after James 1980).

Figure 12: Thin section photomicrograph of magnesian anorthosite clast in 14321,1273 (figure 1 from Lindstrom et al. 1984). Scale is 2.3 mm across.

Figure 11: Pyroxene and olivine composition diagram for rare, possibly-pristine, "plutonic" clasts in 14321 (replotted from Warren et al. 1981, 1983a,b, Shervais et al. 1983 and Lindstrom et al. 1984).

c3 ,1035

Warren et al. (1983a) analyzed this small clast and found it was a Mg-rich anorthositic troctolite with about 70% plagioclase (An₉₅), 30% olivine (Fo₈₅) and trace pyroxene and opaque. Ir = 0.58.

c4 ,1027

Warren et al. (1983a, b) analyzed a granite clast (1.8 g?) in 14321 (table 3). The mineralogical mode of this clast (14321,1027) was reported to be ~60% K-feldspar and 40% quartz with minor Fe-rich pyroxene, ilmenite and yttrobetafite (Meyer and Yang 1988) and zircon (Meyer et al. 1996). The graphic texture is that of intergrown K-spar and silica. Nyquist et al. (1983) and Shih et al. (1985, 1993) dated this clast as 4.09 ± 0.11 by Rb-Sr, 4.11 ± 0.2 by Sm-Nd (figure 27), and 4.06 ± 0.07 by K-Ca (figure 26), while Meyer et al. (1996) dated the U-rich zircon in this granite clast at 3.965 b.y. by U-Pb. Warren et al. found it to be pristine (Ir = 0.047 ppb).

c5 ,1060

Warren et al. (1983b) analyzed a plagioclase-rich clast (6 x 3.5 mm) they termed alkali anorthosite (table 3) that was extracted from 14321,117. This small clast was ~96% plagioclase (An_{77-89}), 1-2% whitlockite, 1-2% pyroxene (scatter) and1% ilmenite, with an annealed cataclastic texture. Warren et al. also give mineral compositions (figure 11). Ir = ?

8A from ,88 (0.5g)

The troctolite clast dated by Compston et al. (1972) at 3.74 ± 0.17 b.y. was analyzed and described by Ware

Figure 13: Composition of Al-rich basalt clasts in 14321 (Al2O3 = 11 - 14%). Data replotted from Duncan et al. 1975, Shervais et al. 1985, Dickinson et al. 1985, Shervais et al. 1988 and Neal et al. 1989.

and Green (1977). It has 35% olivine (Fo₈₆), set in ~60% plagioclase (An₉₅) with minor whitlockite, ilmenite, chrome spinel and trace armalcolite and K-Ba feldspar. The olivine and plagioclase are unzoned (figure 10). It was also analyzed by Taylor et al. (1972) (table 3).

Sample 14321 contains (as clasts) a rich variety of low-Ti, aluminous mare basalts (Chao et al. 1972, Taylor et al. 1972, Wänke et al. 1972, Duncan et al. 1975a,b, Grieve et al. 1975, Ware and Green 1977, Takeda et al. 1980, Shervais et al. 1984, Dickinson et al. 1985, Neal et al. 1988, 1989). Although these basalt clasts have relatively uniform major-element compositions, they are reported to have an eight-fold variation in "incompatible trace elements" (Dickinson et al. 1985, Neal et al. 1989). The REE patterns vary from KREEPlike (group 1) to low and flat (group 5). Basalt clast groups 2-4 are intermediate, but all lack the bow-shaped pattern characteristic of mare basalts (Shervais et al. 1985). Group 3 basalts are roughly similar to sample 14053 (which may itself have been a clast in the Fra Mauro Formation). Neal et al. (1989b) provide a model for the origin of these aluminous basalts. Dickinson et al. (1985) analyzed 36 fragments of basalt from the processing fines (Meyer and King 1979) and found that they were all high alumina (HA). Neal et al. (1989) provided data for 26 additional fragments of HA basalt

Figure 14: Noramlized rare-earth-element diagram for basalt clasts and matrix of 14321. Data from Neal et al. 1988, table 1 and 2.

Lunar Sample Compendium C Meyer 2009

from 14321. One of the largest basalt clasts in 14321 was B-102 (figure 4), but it is not clear whether it has been analyzed or dated (although it was probably sampled in one of the processing fines studied by Dickinson et al.)

Another group of basalts in 14321 were termed Olivine Vitrophyre Basalts (Allen et al. 1979). These were first seen in thin section only, but later recognized and analyzed by Shervais et al. (1988). The average olivine vitrophyre (AOV) composition is given in table 3A. Note that AOV is ~6 ppb Ir!

6A from ,88 (0.15g)

Basalt clast, similar to 14053, with \sim 20% olivine and equal quantities of plagioclase and pyroxene with fine grained ilmenite (Ware and Green 1977). Compston et al. (1972) dated this basalt at 4.05 ± 0.08 b.y.

4A from ,88 (0.15g)

Basalt clast with $\sim 3\%$ olivine, 5% opaques and more pyroxene than plagioclase (Ware and Green 1977). Compston et al. (1972) dated this clast – (revised downward to 4.08 ± 0.1 b.y. see de Laeter et al. 1973)

X1

Basalt clast X1 (Gancarz et al. 1971) is a subophitic to intergranular basalt composed of \sim 70% plagioclase and clinopyroxene (\sim 25%) that was dated by Papanastassiou and Wasserburg (1971). It contained high Ni metal grains (Gancarz et al. 1971).

Figure 17: Thin section photomicrograph of troctolite clast in 14321,1241 (figure 5 from Lindstrom et al. 1994). Scale 2.3 mm across.

B1

Basalt clast found by Morgan et al. (1975) and Warren et al. (1979) to have low meteoritic siderophile content – thus pristine.

B-101 from ,46

This large basalt clast (figures 4 and 7) may not have been analyzed or dated yet!

Numerous clasts of troctolite, anorthosite, etc. are described in Lindstrom et al. (1984), Snyder et al. (1995), and Shervais and McGee (1998). Troctolite clast ,1379 was described by Snyder et al. as ~72% plagioclase ($An_{94.96}$), 27% olivine (Fo_{86-88}) with minor diopside ($Wo_{45.47}En_{49.51}$). See table 4 as a guide to these clasts. Note that norite, and or ferroan anorthosite clasts are absent from this clast collection (except perhaps

Figure 16: Normalized rare-earth-element patterns for unusual clasts in 14321 (data from table 3).

Figure 18: Thin section photomicrograph of granite clast in 14321, 1027 illustrating intergrown silica and K-feldspar (figure 6 from Meyer et al. 1996). Figure is 2.3 mm across.

Summary of A	ge Data for 14	321 (in b.y.)			
v	Rb/Sr	Sm/Nd	Ar/Ar		
Breccia					
matrix?			3.93 ± 0	0.04 b.y.	Turner et al. 1971
matrix?			4.06 b.y	y. (total Ar)	York et al. 1972
Basalt Clasts					
"igneous"			3.92 (to	otal Ar)	Turner et al. 1971
Clast "6A"	4.05 ± 0.08				Compston et al. 1972
Clast "4A"	4.08 ± 0.1			Compst	on et al. 1971, deLaeter
Clast 191 X1	3.95 ± 0.04			Papanas	stassiou, Wasserburg 1971
,371	3.99 ± 0.14				Mark et al. 1975
,184,55	4.01 ± 0.12				Mark et al. 1973, 1974
,184,1D			3.84 (to	otal Ar)	York et al. 1972
,184,12B			3.94		York et al. 1972
,184,17B			3.83		York et al. 1972
Group 1	4.12 ± 0.08				Dash et al. 1987
Group 2	4.07 ± 0.03				Dash et al. 1987
Group 3 (14053)	3.96 ± 0.04			Papana	stassiou, Wasserburg 1971
Group 4	4.12 ± 0.15	3.75 ± 0.35			Dash et al. 1987
Group 5	4.33 ± 0.13				Dash et al. 1987
Group 5'	4.24 ± 0.14				Dash et al. 1987
"Tridymite" bas.	4.01 ± 0.04	3.76 ± 0.48			Dash et al. 1987
				U/Pb	
Individual Zirco	ons				
B1				4.010 ± 0.002	Meyer et al. 1996
B2				4.034 ± 0.023	(see also new data in
B8				4.112 ± 0.025	Nemchin et al. 2006)
B10				4.211 ± 0.008	
B11				4.209 ± 0.009	
B12				4.333 ± 0.005	
B13				4.371 ± 0.010	
B14				4.183 ± 0.010	
Granite	4.09 ± 0.11	4.11 ± 0.2	3.88	Shih et	al. 1985, Nyquist et al. 1983
Zircon				4.06 ± 0.07 by K- 3.965 ± 0.005	-Ca Shih et al. 1993 Meyer et al. 1996
Troctolite "8a"	3.74 ± 0.17				Compston et al. 1972
Anorthosite ,16				$\sim 3.91 \pm 0.02$	Meyer et al. 1996

as minute fragments in the dark microbreccias (see Grieve et al. 1975).

Many more clasts are seen in thin section only (Wilshire and Jackson 1971, Chao et al. 1972). Gay et al. (1972) and Meyer et al. (1988) describe an anorthosite clast with ilmenite and zircon found in thin section 14321,16 and ,17. Steele (1972) and Steele and Smith (1975) describe a unique pink-spinel bearing clast in thin section 14321,76. Wilshire and Jackson pictured a melted and recrystallized granophyre clast.

Mineralogy

Olivine: Olivine compositions range widely (figures 6, 8 and 11). Steele and Smith (1975) and Grieve et al. (1975) determined the trace element contents of olivines.

Pyroxene: Pyroxene compositions of "mineral clasts" in the matrix are given in diagram form in Stöffler and Knöll (1977) and Simonds et al. (1977). Takeda et al. (1980) carefully studied chemical zoning in one of the high-Al basalts. Grieve et al. (1975) report exsolved

Figure 19: Ar release diagram for 14321 matrix (from Turner et al. 1971).

Figure 20: Rb-Sr internal isochron for basalt clast in 14321 (from Papanastassiou and Wasserburg 1971).

pyroxene as well as orthopyroxene. There is a higher proportion of orthopyroxene in the microbreccia lithologies than in the matrix.

Plagioclase: Grieve et al. found plagioclase ranged from An_{72} to An_{96} . Shervais and McGee (1998) studied

Figure 21: Rb-Sr internal isochron for basalt clast from 14321 (from Mark et al. 1973).

Figure 22: Rb-Sr isochron for basalt clast in 14321 (from Mark et al. 1975).

Figure 23: Internal isochron for Rb-Sr dating of basalt clast in 14321 (by Compston et al. 1972).

Figure 24: Internal isochron for basalt clast in 14321 (from Dash et al. 1987).

Figure 26: K-Ca internal isochron for granite clast in 14321, also dated by Rb-Sr, Sm-Nd and U/Pb in zircon (from Shih et al. 1993).

the REE patterns of plagioclase in troctolite and anorthosite clasts in 14321.

Phosphates: Grieve et al. reported apatite and whitlockite analyses. Ware and Green (1977) give an analysis of whitlockite in the troctolite clast 8A.

Opaques: Ilmenite is the most important opaque (Grieve et al.), but Ti-Cr spinels are also present. Steele (1972) analyzed the Cr-spinel. Sphene is also reported by Grieve et al.

Figure 25: Internal isochron for basalt clast in 14321 (from Dash et al. 1987).

Figure 27: Sm-Nd internal mineral isochron for lunar granite clast 14321,1062 (from Shih et al. 1985).

Zircon: Braddy et al. (1975) determined the U content of 93 zircons extracted from 14321 (U = 15 - 400 ppm) . Meyer et al. (1996) and Nemchin et al. (2006, 2008) dated large zircons extracted from 14321 sawdust by ion microprobe (U = 8 - 900 ppm). Also see analysis of zircon in Grieve et al. (1975).

Yttrobetafite: Meyer and Yang (1988) found that this metamict mineral contained significant Nb and W.

reference weight	Eldrid 1.1kg	ge 72 200 g	1	Kieth 1.1 kg	72	Rancitelli 72 g	i72	LSPET	71LSP	ET 7	Morga 71Dunc 9A	in 72 an 72 9B	10A	13		Scoon Masud	72 a 72	Wanke Baedecl 184-25	72 ker
TiO2 Al2O3 FeO MnO MgO CaO								40 2.4 14 13 0.26 12 8.5	50 1.5 18 9 0.15 11 8.2		2.27 13.3 15.4 0.21	2.28 14.1 13 0.2	2.01 12.38 15.05 0.21	2.08 14.74 12.86 0.19	(c) (c) (c) (c)	2.06 15.2 12.25 0.17 10.73 9.94		1.3 16.44 10.7 0.13 11.27 9.37	
Na2O K2O P2O5 S % sum	0.48	0.47	(a)	0.48	(a)	0.49	(a)	0.4 0.33	0.58 0.56		0.6 0.17	0.71 0.24	0.62	0.7 0.31	(c) (c)	0.78 0.62 0.41 0.07		0.79 0.56	
Sc ppm								43	16	(b)	52.8	34.9	44.7	38.9	(c)			20	(c)
v Cr Co Ni Cu								85 2900 33 180 13	32 110 32 240 7	(b) (b) (b) (b)	104 2920 33.2	69 1630 28.1	85 2800 50.1	86 2160 33.4	(c) (c) (c)			1070 39 200	(c) (c) (c)
Zn Ga										(-)	2.8							35 5.2	(c) (c)
Ge ppb As											240							160	(c) (c)
Se Rb Sr								7 140	14 180	(b) (b)	0.16 3.6								
Zr Nb Mo Ru								670 22	860 46	(b) (b) (b)									
Rh Pd ppb																			
Ag ppb Cd ppb											1.1							84	(c)
In ppb Sn ppb											7.3							3.4	(c)
Sb ppb Te ppb											15.3								
Cs ppm Ba La Ce								380 40	730 65	(b) (b)	0.23 27.3 82	590 58.2 172	560 35.6 119	600 51 138	(c) (c) (c)	70.6 193.4	(d) (d)	99 230	(c) (c)
Pr Nd											447	00.4	10.0	55	(c)	114.2	(d)		
Eu											14.7	20.4	1.74	1.96	(c) (c)	2.647	(d) (d)	3.03	(c)
Tb Dv											3.1	5.5	3.7	4.6	(c)	41 7	(d)	8.9 48	(c) (c)
Ho Er																25.63	(d)		(-)
Tm Yb								20	28	(b)	9.3	18.5	10.5	15.8	(c)	22.78	(d)	28	(c)
Lu Hf Ta W. ppb											1.6 9.8	2.82 18 2.6	1.85 12.5 1.9	2.3 18.1 3.4	(c) (c) (c)	3.32	(d)	3.9 31 4	(c) (c) (c)
Re ppb											0.06								
Ir ppb Pt ppb											0.71							5.2	(c)
Au ppb Th ppm U ppm <i>technique:</i>	12.7 3.9 (a) rad	10.8 2.9 diation	(a) (a) <i>cou</i>	12.7 3.6 nting. (i	(a) (a) b) er	13.3 3.42 nis. spec	(a) (a) (c)	INAA.	(d) IDMS	S	0.7 3.6	12.2	6.2	9.2	(c)				

Table 1a. Chemical composition of 14321 (matrix).

Table 1b. Chemical composition of 14321 (matrix and microbreccia clasts). Morgan 75

				. •	
2 Boynto	on 75	Palme 78	3 Lindstro	m 72	
		48.01 1.75	microbre 184,15 1.73	eccia clasts 184,14A 1.58	184,19A 2.07
14.7 10.9		15.4 11.4 0.16 11.54	15.25 10.55 0.14	16.8 10.68 0.11	15.15 12.35 0.16
9.24 0.73		9.44 0.78 0.56 0.69 0.04	0.88 0.96	0.81 0.52	0.81 0.46
24.4	25	23.6	21.4 38	20.3 39	29.6 56
1510 32 314	1540 40	1380 42.2 390	1180 31.4	1280 39	1620 37.9
3.8 5.86 430		4.55 3.54 5.25 1100	3.8	6.6	3.3
		0.119 0.039 14.8 188	139 30.8	128 12.9	92 9.3
		261 1210 75	1070	720	820
18 1.5		300	1.49 17 1.69	0.88 298 3.4	0.83 52 1.45
			2.1 8	2.2 11	2.4 6
900 85 230	800 79 210	0.692 940 88 237 29 4	1.29 1140 97.1 260	0.54 1070 88.6 260	0.42 730 77.7 211
38 2.51	35 2.59	142 34.3 2.69 43.6	150 46.9 3.34	125 42.2 3.42	147 37.6 2.7
6.6 40	7	7.71 48.3 10.4 29.3	9.4	9.6	7.6
26 3.5 23	26 3.6 22	4.25 28.3 3.89 29.2 3.9 1800	32.6 4.35 32.1 7.3	30.5 4.3 29.5 6	25.5 3.5 24.1 6
		0.7	0.64	0.7	0.55
6.4		8	6.9	7.8	6.1
5.9 3.9		7.8 13.8 4.04	8.08	6.06	6.41
	14.7 10.9 9.24 0.73 24.4 1510 32 314 3.8 5.86 430 18 1.5 900 85 230 38 2.51 6.6 40 26 3.5 23 6.4 5.9 3.9	14.7 10.9 9.24 0.73 24.4 25 1510 1510 1540 314 3.8 5.86 430 18 1.5 900 800 85 79 230 210 38 35 2.51 2.59 6.6 7 40 35 230 210 38 35 2.51 2.59 6.6 7 6.4 5.9 3.9 3.9	2Boymon 73Family 73 48.01 1.75 14.7 15.4 10.9 11.4 0.16 11.54 9.24 9.44 0.73 0.78 0.56 0.69 0.04 24.42523.6 1510 15401380 32 4042.2 314 390 4.55 3.8 5.86 5.25 430 1100 0.119 0.039 14.8 188 261 1210 75 79 88 261 1210 75 75 88 230 210 237 29.4 442 38 35 34.3 2.51 2.59 2.69 43.6 6.6 7 7.71 40 48.3 10.4 29.3 2.52 26 26 28.3 3.5 3.6 3.89 23 22 29.2 3.9 1800 0.7 6.4 8 5.9 3.9 7.8 3.9 7.8 3.9 7.8 3.9 7.8 3.9 7.8 3.9 7.8 3.9 7.8 3.9 7.8 7.8 7.8 7.9 7.8 7.9 <td>2Boyner 73Fame 75Fame 75microbre microbre microbre $48.01$184,151.751.731.751.7314.715.415.2510.911.410.550.730.780.880.730.780.880.730.780.880.730.780.880.730.780.960.690.04180324042.23143904.553.85.865.2543011000.1190.0391.4.830.818826112101070751.69900800940114085798897.123021023726029.4142150383534.346.92.512.592.693.344.048.310.429.34.25262628.332.63.53.63.97.318000.70.646.486.95.97.83.913.84.04</td> <td>2Boynton 73Painte ro resolution 7214.715.751.731.5814.715.415.2516.810.911.410.5510.680.911.410.5510.680.730.780.880.810.730.760.880.810.730.760.880.810.730.760.880.810.730.770.780.880.690.041280324042.23143904.553.83.83.543.83.543.83.543.83.543.83.543.83.543.811000.03913912101070720751.693.41.52.12.21.291.693.41.51.691.693.41.51.691.693.41.693.41.693.41.693.41.693.41.693.41.693.41.693.41.693.41.693.41.693.41.693.41.693.41.693.42.1023726026029.41421501253.63.832.4</td>	2Boyner 73Fame 75Fame 75microbre microbre microbre 48.01 184,151.751.731.751.7314.715.415.2510.911.410.550.730.780.880.730.780.880.730.780.880.730.780.880.730.780.960.690.04180324042.23143904.553.85.865.2543011000.1190.0391.4.830.818826112101070751.69900800940114085798897.123021023726029.4142150383534.346.92.512.592.693.344.048.310.429.34.25262628.332.63.53.63.97.318000.70.646.486.95.97.83.913.84.04	2Boynton 73Painte ro resolution 7214.715.751.731.5814.715.415.2516.810.911.410.5510.680.911.410.5510.680.730.780.880.810.730.760.880.810.730.760.880.810.730.760.880.810.730.770.780.880.690.041280324042.23143904.553.83.83.543.83.543.83.543.83.543.83.543.83.543.811000.03913912101070720751.693.41.52.12.21.291.693.41.51.691.693.41.51.691.693.41.693.41.693.41.693.41.693.41.693.41.693.41.693.41.693.41.693.41.693.41.693.41.693.41.693.42.1023726026029.41421501253.63.832.4

Li ppm Be B C	Eisenstraut 72 n 6.99 4.23 1.77 4.84				LSPET 18 5.28 28	LSPET 71 19 3.31	Morgan 72 6.09	Palme 78 35	
S					20				
F ppm Cl Br ppb I							85	51 150	
Pb ppm Hg ppb Tl ppb Bi ppb							1.7 0.55		

Table 1c. Light and/or volatile elements for 14321.

Chemistry

Eldridge et al. (1972) determined bulk K, Th and U contents of large pieces by "radiation counting" (table 1) and these analyses probably give the best idea of the "whole rock" composition (compare with Palme et al. 1978). Scoon (1972) and Strasheim et al. (1972) give bulk analyses of the "whole rock". Wänke et al. (1972), Boynton et al. (1975) and Palme et al. (1978) appears to have analyzed the matrix, while others may have analyzed only very small, unrepresentative portions of this massive breccia (table 1). Lindstrom et al. (1972), Duncan et al. (1975) and Morgan et al. (1975) showed that there were more rare-earthelements and more meteoritic contamination (Ir, Au etc.) in the dark microbreccia clasts than in the light matrix of 14321. The parental rock type that provides the high REE content of the microbreccia, remains a mystery.

Table 2 tabulates only a few of the basalt analyses. They were all found to have uniformly high Al_2O_3 . Duncan et al. (1975) analyzed 15 basalts, but did not match them with thin sections. Dickinson et al. (1985) analyzed 36 fragments of basalt, and found five (5) different groups. However, since their fragments were from the processing fines, presumably at least some were from the same broken basalt clast, yielding artificial groupings. Shervais et al. (1985) analyzed 13 more and Neal et al. (1988) an additional 26. When all the data are plotted, there appears to be a continuum of these basalts (figure 11). Figure 12 shows the REE patterns for some of the basalts.

Shervais et al. (1988) report the average composition of olivine vitrophyre clasts (AOV) – see table 3A.

However, note that there is about 6 ppb Ir (non-pristine?)

Analyses of possibly-pristine, plutonic, rock clasts are given in table 3.

Radiogenic age dating

The age of the breccia matrix has not been well determined. Both Turner et al. (1971) and York et al. (1972) determined stair-step Ar release patterns for the matrix – yielding total K-Ar ages of 3.93 and 4.06 b.y. (but this can't be right!). Clearly the matrix sample includes minerals of various old ages, which have not all been degassed of old Ar (figure 19).

Mark et al. (1973, 1974, 1975) dated several basalt and microbreccia clasts in 14321 by Rb-Sr (figures 21, 22). Compston et al. (1972), Papanastassiou and Wasserburg (1971), York et al. (1972) and Dash et al. (1987) have also dated the basalt fragments in 14321 (figures 20, 23, 24 and 25).

Compston et al. (1972) dated a "troctolite clast" (see table).

Meyer et al. (1996) dated zircons, including one in the granite clast analysed by Warren et al. (1983) and dated by Nyquist et al. (1983) and Shih et al. (1985) (figure 27). Nemchin et al. (2006, 2008) dated additional zircons from 14321, finding a wide range of ages.

Mark et al. (1975) first noted that the initial Sr ratios for basalt isochrons were distinctly different, such that they must be from different basalt flows and were not equilibrated when incorporated into the crystalline

reference weight	Taylor	72	Duncan 75 Morgan 75	Baedecker Wanke 72 184-1E	72 Neal 88 low	high	Dickenso group 1	on 85 group 2	group 3	group 4	group 5	Shervais 8 tridymite	5 MB-4	
TiO2 Al2O3 FeO MnO			2.02 11.96 16.34 0.22	47.7 1.78 12.28 16.7 0.23	42.8 2.56 11.1 20.1 0.24	48.9 2.41 13.7 14.2 0.19	2.2 12.7 16.2 0.22	2.1 12.3 16.8 0.23	2.7 12.5 16.9 0.24	2.3 12.1 16.8 0.24	2.6 11.8 17.5 0.24	6.49 9 22.8 0.3105	2.57 13.4 15.9 0.24	(b) (b) (b) (b)
MgO CaO Na2O			0.54	8.95 10.35 0.55	12.1 10.1 0.46	9.1 10.3 0.6	7.9 11.2 0.6	9.3 10.9 0.51	8.2 10.8 0.42	10.6 10.6 0.36	10.3 10.8 0.39	6.47 9 0.294	10.8 10.9 0.52	(b) (b) (b)
K2O P2O5 S % sum			0.13	0.17	0.07	0.36	0.16	0.13	0.009	0.007	0.007	0.5	0.14	(b)
Sc ppm V Cr Co			54.6 92 3200 34.3	61 3070 30	65.2 132 3270 33.6	48.9 81 2040 35.9	59 102 2531 29	59 115 3079 31	56 116 2326 27	59 124 3010 30	62 121 3147 29	75.8 98 2550 24.6	60.3 117 3350 31.9	(b) (b) (b) (b)
Cu Zn			2.9	3.7	00							10	30	(0)
Ga Ge ppb			640	4 880										
As Se Rb Sr	5.7 120	(a) (a)	0.338 2.7									21 60	8 60	(b) (b)
r Zr Nb Mo Ru Rb	74 440 22	(a) (a) (a)					320	270	170	170	70	500	280	(b)
Pd ppb Ag ppb Cd ppb In ppb			0.6 24 1.84	7.9 3.7										
Sn ppb Sb ppb Te ppb	200	(a)	0.78 6											
Cs ppm Ba	0.38 280	(a) (a)	0.17				159	131	112	101	53	0.3 340	0.19 165	(b) (b)
La Ce Pr	28 84 12	(a) (a) (a)	19 56	21 65	3.06 7	39.7 105	25 65	19.7 53	11.3 30	6.4 18	3.4 8	34.5 91.9	18.9 52.3	(b) (b)
Nd Sm	46 14	(a) (a)	10.8		5.2 2.14	62 17.6	40 12.5	34 10	21 6.6	10.8 3.7	6.3 2.3	56 16.9	35 9.92	(b) (b)
Eu Gd	1.5 17	(a) (a)	1.34	1.4	0.6	1.78	1.45	1.3	1.24	0.88	0.71	1.05	1.19	(b)
Dy Ho Er	2.5 15 3.7 9.8	(a) (a) (a) (a)	2.34	2.5 13	0.46	3.8	2.5 14.9	2.1 12.6	1.49 10.2	0.88 5.5	0.67 0.45	3.68	2.21	(b) (b)
Yb	1.5 7.7	(a) (a)	6.5	7.5	2.9	12.2	8.3	7	6	3.9	3.2	13.4	6.72	(b)
Lu		(-)	1.15	1.2	0.42	1.59	1.21	1.04	0.89	0.6	0.61	2.02	1.02	(b)
Hf Ta	7.5	(a)	7.7 1.2	8 1.2	1.5 0.37	15.4 2.02	8.7 1.3	7.3 1.1	4.7 0.9	2.9 0.6	1.9 0.5	12 1.79	7.67 0.89	(b) (b)
vv ppb Re ppb Os ppb	200	(a)	0.0051											
Ir ppb Pt ppb			0.044	0.4										
Au ppb			0.3											
Th ppm	2.9	(a)	2.3			7.3	2.3	1.9	0.9	0.8	0.4	4.6	1.81	(b)
technique	(a) em	iss. s	spec., (b) INA	4 <i>A</i>		2.0						1.2	0.40	(a)

Table 2. Chemical composition of some basalt clasts in 14321.

	troct.		igneous	5	troct.	troct	troct.	granite	alkali a	nor.	AOV
reference	Taylor	72	Wanke	72	Warren	81	Warren 82	Warren 83	Warren	83	Shervais 87
weight	8a 42 5	(a)	223		C1	C2	C3	C4	C5		46 5
5102 % TiO2	43.5	(a) (a)	47.5 1.8		42.0	41.94	42.0	74.Z 0.33			40.0
AI2O3	23.3	(a)	12 09		28.7	26.46	26.08	12.5			12.4
FeO	4 56	(a)	15.8	(b)	2 59	5 07	3 72	2.32	0.95		9.86
MnO	0.6	(a)	0.22	(0)	0.02	0.05	0.04	0.02	0.00		0.13
MaQ	15 82	(a)	8 79		9.46	12 45	11 79	0.07			19.2
CaO	12.27	(a)	11.33		15.12	13.86	13.86	1.25	19.6		7.9
Na2O	0.28	(a)	0.5		0.38	0.32	0.37	0.52	1.39		0.8
K2O	0.06	(a)	0.13		0.075	0.054	0.07	8.6	0.17		0.51
P2O5	0.03	(a)									
S %											
sum											
0				(1-)	1 00		0.4	•	0.5		47.0
Sc ppm			55	(D)	1.69	4.5	2.4	3	3.5	(D)	17.8
V Cr			2000	(h)	1000	642	720	17	61	(h)	41
Co			2800	(b)	9.2	14.8	16.9	0.94	1 1	(b)	35.5
Ni			39	(b)	32	24	72	49	<17	(b)	297
Cu			82	(b)	52	27	12	4.5	517	(0)	201
Zn			5.1	(b)	2.4	3.5	2.2	1.9		(b)	
Ga			4	(b)			5.6	9	8.6	(b)	
Ge ppb			470	(b)	26.8	18.1	31	87		(b)	
As			0.077	(b)							
Se											
Rb	0.9	(a)	6.7	(b)				210		(b)	22
Sr	150	(a)	100	(b)				55	430	(b)	156
Y Zr	22	(a)			20	250	560	660	950	(h)	015
ZI	3.2	(a)			30	350	560	000	000	(D)	615
Mo	5.2	(a)									
Ru											
Rh											
Pd ppb			0.001	(b)							
Ag ppb				• •							
Cd ppb							129	34		(b)	
In ppb											
Sn ppb											
Sb ppb											
Те ррр	0.00	(-)	0.00	(6)			0.01	F 7		(6)	0.00
Cs ppm	200	(a)	100	(D)	250	200	0.21	5.7 2160	610	(D) (b)	0.69
La	14	(a) (a)	22	(b)	250	200 22 Q	24.2	2100	111	(b)	58.2
Ce	34	(a)	60	(b)	61	52	67	117	280	(b)	158
Pr	3.6	(a)	7.4	(b)	01	02	01		200	(5)	100
Nd	13	(a)		(-)	38	23	41	58	173	(b)	93
Sm	3.2	(a)	8.6	(b)	10.5	5.9	10.8	15.9	46	(b)	25.3
Eu	2	(a)	1.17	(b)	2.07	2.3	1.88	1.17	6.6	(b)	2.01
Gd	3.8	(a)	14.4	(b)							
Tb	0.5	(a)	2.5	(b)	1.9	1.27	1.99	4.3	8.6	(b)	6.05
Dy	3.6	(a)	13	(b)	10.4	8.5	13.2	31.5	52	(b)	
HO	0.73	(a)	2.2	(D)			2.6	8.4	10.8	(D)	
EI Tm	2.3	(a)	9.5	(D)							
Yh	2.2	(a) (a)	6.8	(h)	42	96	4 9	32.2	23.2	(h)	19.8
Lu Lu	2.2	(u)	0.94	(b)	0.56	1.56	0.73	5 1	3 15	(b)	2 64
Hf	2.8	(a)	7.1	(b)	0.15	8.8	10.3	13.9	17.5	(b)	22
Та	-	()	1	(b)	0.037	1.77	0.18	8.3	0.46	(b)	2.56
W ppb	100	(a)	0.55	(b)						. /	
Re ppb		. ,		. ,	0.02	0.02	<.13	<0.018		(b)	
Os ppb											
lr ppb			1.1	(b)	0.053	0.031	0.58	0.047	<5	(b)	6.57
Pt ppb			0.6	(b)	o - -	0.05	0.050	o oc-		<i>.</i>	
Au ppb	0.50	(-)	2.0	<u>/</u> L\	0.17	0.031	0.058	0.035	11 F	(b)	11 50
	0.50	(a)	∠.0 0.54	(D) (b)	2	∠.0 1.6	2.21 0.27	00 23 4	11.5	(D) (b)	11.53
technique	(a) em	(a) iss i	0.04 spec /h	(D)) INI	4 <i>A</i>	1.0	0.21	2J. 4	۷.۱	(u)	2.34
	10,011		., in the second	,	·						

Table 3a. Chemical composition of other clasts in 14321.

Lunar Sample Compendium C Meyer 2009

roforonoo	Mg-Ano	rthosites		Troctol	ites		Dunite? troct.		
weight SiO2 %	,1211	,1205-1	,1205-2	,1140	,1142	,1154	,1141	,1331 43	
TiO2 Al2O3 FeO	35.2 0.43	0.07 32.2 0.097	0.21 31.4 1.37	0.06 15.02 8.55	0.16 21.6 4.67	2.78	0.08 0.56 11.55	26 3.3	
MnO MgO CaO	2.08	0.89	2.78 18 6	30.5 9.2	17.7 12 5	15.2	53.7	0.02 13.3 13.3	
Na2O K2O P2O5 S % sum	0.5	0.475	0.53	0.198	0.372	0.378	0.023	0.33	
Sc ppm V	1.42	0.433	2.61	3.46	3.79	1.47	5	2	
Cr Co Ni Cu Zn Ga Ge ppb As Se Pb	71 1.22	34 0.53	209 5.46 50	397 22.2 44	933 21 <55	225 8.29 <22	522 61 70	268 11.8 21	
RD Sr V	240	240	220	127	161	195	<30		
Zr Nb Mo Ru Rh Pd ppb Ag ppb Cd ppb In ppb			150	<40	135	<25	<70		
Sn ppb Sb ppb Te ppb Cs ppm Ba La Ce	460 231 620	375 57.7 152	410 21.5 53.4	152 10.16 24.8	238 15.14 38	274 14.8 35.2	24 5.14 13.5	248 8.04 17	
Pr Nd	410	97	26	14.8	25	22.4	8.4		
Sm Eu	110 3.73	28.7 2.48	8.33 2.5	3.8 1.31	5.58 1.76	5.07 2.05	2.255 0.065	1.66 1.94	
Tb Dy Ho Er Tm	23.6	6.75	1.82	0.76	1.11	1.01	0.5	0.213	
Yb	55.3 7.84	11.7 1.53	4.65	2.2	3.35	2.08	1.98	1.13	
Lu Hf Ta W ppb Re ppb Os ppb Ir ppb Pt ppb Au ppb	7.84 0.68 0.1	0.24 0.108	0.681 3.84 0.47	0.356 0.198 0.055	0.549 3.38 0.31	0.299 0.058 0.024	0.39 0.93 0.1	0.16 0.197 0.062	
Th ppm U ppm <i>technique</i>	30 2.8 (a) emis	6.5 0.61 s. spec.,	2.6 0.71 (b) INAA	0.75 0.21	1.23 0.29	0.89 0.069	0.71 0.09	0.064 0.03	

Table 3b. Chemical composition of other clasts in 14321.

clast c1	parent ,46	type anor. troc.	size in mm 18 x 12	Ir ppb 0.053	analyzed	TS ,1019 ,1241	dated	other desig. W-101	references Warren 81, Meyer 79, Lindstrom 84 Shervais and McGee 98
c2 c3 c4 c5 8A 6A	,46 ,46	anor. troc. granite w. zircon mg anorth troctolite basalt	7 x 5 16 x 7	0.031 0.58 0.047	,1037 ,1027	,994 ,1047 ,1613	,1062	W-5 W-3	Warren 81, Meyer 79, Lindstrom 84 Warren 83a Warren 83a, Shih 93, Shih 85 Meyer 96 Warren 83b Compston 72, Taylor 72, Ware 77 Ware 77
B-102 DA-3	,46 ,37 ,46 ,116	basalt ol. vitrophyre ol. vit. ol. vit. troctolite dunite troctolite	38 x 20 65 x 35 6 x 5	~ 6	???? ,1159 ,1180 ,1331 ,1141 ,1154	,970 ,1243 ,1379 ,1236 ,1241	????	MB-1	Meyer 79, Shervais 84 Allen 79 Snyder Snyder Snyder 95 Lindstrom 84, Shervais 84 Lindstrom 84, c1 of Warren 81
	,46 ,46 90	troctolite troctolite	10 x 10 4 x 2		,1140 ,1142 1211	,1235 ,1237 ,1273		w-4 w-2 w-1	Lindstrom 84, Shervais 84 Shervais and McGee 98 Lindstrom 84, Shervais 84 Lindstrom 84, Shervais and McGee 98
DV-1 DV-3 MB-8 MB-10 MB-4 DV-6 DV-7 DV-2 MB-1 DV-4 DV-5	,601 ,1082 ,1082 ,37 ,46 ,1082 ,90 ,37 ,112 ,37 ,37	mg anor. basalt basalt basalt basalt basalt vitrophyre vitrophyre 14053 type 14053 type olivine b. tridymite ferro.	8 x 5 6 x 5 Bas.		,1205 ,1184 ,1185 ,1179 ,1157 ,1143 ,1183 ,1210 ,1160 ,1149 ,1161	,1269 ,1261 ,1262 ,1256 ,1242 ,1238 ,1260 ,1271 ,1245 ,1151 ,1246 ,1162	,1394 ,1384 ,1247	w-1 group 4 group 5 ,1383	Lindstrom 84 Shervais 84b Shervais 84b Shervais 84b Shervais 84b Shervais 84b Shervais 84b Shervais 84b Shervais 84b Shervais 85, Dash 87 Shervais 85, Dash 87 Shervais 85, Dash 87
	fines	olivine bas. ol. Bas. ol. Bas. high Al bas. HA basalt HA basalt			,198 ,199 ,970 ,1445 ,1448 ,1449 ,1451 ,9056 ,9059	,1482 ,1483 ,1484	,9056 ,9059	group 2 group 5	Shervais Neal 1989 Dash 87, Dickinson 85 Dash 87, Dickinson 85

Table 4. Cross-correlation of sub-sample numbers (14321).

matrix breccia. This has also been discussed by Dash et al. (1987) and Neal and Taylor (1990).

Cosmogenic isotopes and exposure ages

Eldridge et al. (1972), Rancitelli et al. (1972) and Kieth et al. (1972) reported ²²Na, ²⁶Al, ⁵⁴Mn, ⁵⁶Co and ⁴⁸Sc activity for large pieces of 14321. Wahlen et al. (1972) reported ⁵⁶Co, ⁵⁴Mn, ⁵⁵Fe, ²²Na, ²⁶Al, ⁵³Mn, ³⁶Cl and ¹⁰Be activity in smaller samples, including surface samples with high activity of ⁵⁶Co (77 day half life). 14321 was used for ⁵³Mn and ²⁶Al depth profiles (Wahlen et al. 1972, Imamura et al. 1974, Kohl et al. 1978) (see figure 30). Burnett et al. (1972) reported an ³⁸Ar exposure age of 24 ± 2 m.y. Lugmair and Marti (1972) determined an exposure age for 14321 of 23.8 m.y. by the ⁸¹Kr method. This is interpreted to be the age of cone crater (Burnett et al., Arvidson et al. 1975). Burnett et al. also found that 14321 must have been buried about 4 meters during part of its history.

Other Studies

Morrison et al. (1972) counted the micrometeorite craters on various surfaces of 14321. Remanent magnetization was studied by Gose et al. (1972), Pearce et al. (1972) and Hargraves and Dorety (1972). Pearce et al. found that the thermoremanent magnetization was

directionally consistent in three different fragments of 14321.

Crozaz et al. (1972) and Hutcheon et al. (1972) etched fossil fission tracks in phosphates in 14321 in an attempt to search for evidence of extinct ²⁴⁴Pu.

Nemchin et al. (2006) determined the oxygen isotope composition of zircons.

Processing

14321 was oriented by photography to establish its top lunar surface (Swann 1971). Warner and Heiken (1972) made a map of the surface of 14321 before it was subdivided. It was originally cut in half, and a thick column (,45) was prepared from one half (figure 27) for initial allocations. A large piece (,40) is on public display at the Smithsonian and another large piece (,38) is in remote storage. In 1982, the largest remaining piece (,37) was slabbed parallel to its west face (the original saw cut, figure 2), creating pieces ,1082 ,1083 and ,1084 (Shervais et al. 1984)(see flow diagram). In 1986, the remains of ,37 were again sawn to reveal interior clasts.

Gordon Goles led the first consortium study of 14321 (preliminary results reported in Lindstrom et al. 1972,

Duncan et al. 1975). Located in their 70 gram piece (,184) were three basalts (one of which was estimated at 20 grams). Unfortunately, in this initial study "it was not possible to match specific clasts between thin sections and the fragment surfaces which were to be sampled because of the way in which the thin sections were prepared."

A consortium of Bill Compston, John Lovering, Ted Ringwood and Ross Taylor studied sample 14321,88 (84 grams), which also had three basaltic pebbles (clasts) (Ware and Green 1977).

Two breccia guidebooks were prepared to guide in the selection of clasts for further study: Meyer and King (1979) and Shervais, Knapp and Taylor (1984). The data packs describing the allocations of 14321 occupy a full shelf in the data center at JSC.

The large piece (,88) that was initially studied by Compston et al., has been returned, and is now available for experiments in the PI Experiment laboratory at JSC.

There are more than 100 thin sections of 14321!

Figure 28: Mug shot of 14321 after dusting. Scale in cm. NASA photo # S71-28416.

Partial List of Photo #s for 14321

S71-28416	Best mug shot whole rock B&W
S71-28403	,0 dusted (after fist cut)
S71-40118	exploded part diagram
S71-40119	cutting plan, column
S76-24004-9	,40 display sample with white clast
S78-32831	close-up of white clast and basalt clast in ,46
S78-32834	2 cm white clast in ,46
S78-26758	the model
S78-33116-9	,37 with white clast
S83-25954	slab
S83-43737	,1082
S84-33329	,37
S84-33333	,116 white clast
S85-36423	,46
S85-38260	,46?
S86-26402	,1408 showing light matrix
	Ine

The Final Word

Grieve et al. (1975) state "Analysis and interpretation of a complex rock like 14321 is rewarded with few categorical conclusions, but we believe that the elucidation of its compositional character and assembly history leads to a very probably evolutionary picture for this area of the Moon". They suggest a partial schematic history in their paper.

Figure 29: Photo of model of 14321 illustrating the initial processing in 1971. The dotted black lines indiate the relative positions of saw cuts in 1982 (Shervais et al. 1984) and again in 1986.

Figure 30: Depth profile of 26Al in 14321 (data from Wahlen et al. 1972).

References for 14321

Allen F.M., Bence A.E. and Grove T.L. (1979) Olivine vitrophyres in Apollo 14 breccia 14321: Samples of the high-Mg component of the lunar highlands. Proc. 10th Lunar Planet. Sci. Conf. 695-712.

Anderson A.T., Braziunas T.F., Jacoby J. and Smith J.V. (1972) Thermal and mechanical history of breccias 14306,

14063, 14270 and 14321. Proc. 3^{rd} Lunar Sci. Conf. 819-835.

Arvidson R., Crozaz G., Drozd R.J., Hohenberg C.M. and Morgan C.J. (1975) Cosmic ray exposure ages of features and events at the Apollo landing sites. The Moon 13, 259-276. Baedecker P.A., Chou C-L. and Wasson J.T. (1972) The extralunar component in lunar soils and breccias. Proc. 3rd Lunar Sci. Conf. 1343-1359.

Bersch M.G., Taylor G.J., Keil K. and Norman M.D. (1991) Mineral compositions in pristine highlands rocks and the diversity of highland magmatism. Geophys. Res. Lett. 18, 2085-2088.

Boynton W.V., Baedecker P.A., Chou C-L., Robinson K.L. and Wasson J.T. (1975) Mixing and transport of lunar surface materials: Evidence obtained by the determination of lithophile, siderophile and volatile elements. Proc. 6th Lunar Sci. Conf. 2241-2259.

Braddy D., Hutcheon I.D. and Price P.B. (1975a) Crystal chemistry of Pu and U and concordant fission track ages of lunar zircons and whitlockites. Proc. 6th Lunar Sci. Conf. 3581-3600.

Burnett D.S., Huneke J.C., Podosek F.A., Russ G.P., Turner G. and Wasserburg G.J. (1972) The irradiation history of lunar samples. (abs) LS III 105-107.

Carlson I.C. and Walton W.J.A. (1978) Apollo 14 Rock Samples. Curators Office. JSC 14240

Chao E.C.T., Minkin J.A. and Best J.B. (1972) Apollo 14 breccias: General characteristics and classification. Proc. 3rd Lunar Sci. Conf. 645-659.

Chao E.C.T. (1973c) Geologic implications of the Apollo 14 Fra Mauro breccias and comparison with ejecta from the Ries Crater, Germany. J. Res. U.S Geol. Survey 1, 1-18.

Christie J.M., Griggs D.T., Heuer A.H., Nord G.L., Radcliffe S.V., Lally J.S. and Fischer R.M. (1973) Electron petrography of Apollo 14 and 15 breccias and shock-produced analogs. Proc. 4th Lunar Sci. Conf. 365-382.

Compston W., Vernon M.J., Berry H. and Rudowski R. (1971) The age of the Fra Mauro Formation: A radiometric older limit. Earth Planet. Sci. Lett. 12, 55-58

Compston W., Vernon M.J., Berry H., Rudowski R., Gray C.M., Ware N., Chappell B.W. and Kaye M. (1972) Apollo 14 mineral ages and the thermal history of the Fra Mauro formation. Proc. 3rd Lunar Sci. Conf. 1487-1501.

Crozaz G., Drozd R., Graf H., Hohenberg C.M., Monnin M., Ragan D., Ralston C., Seitz M., Shirck J., Walker R.M. and Zimmerman J. (1972) Uranium and extinct Pu244 efffects in Apollo 14 materials. Proc. 3rd Lunar Sci. Conf. 1623-1636.

Dash E.J., Shih C-Y., Bansal B.M., Wiesmann H. and Nyquist L.A. (1987) Isotopic analysis of basaltic fragments from

lunar breccia 14321: Chronology and petrogenesis of pre-Imbrium mare volcanism. Geochim. Cosmochim. Acta 51, 3241-3254.

de Laeter J.R., Vernon M.J. and Compston W. (1973) Revison of lunar Rb-Sr ages. Geochem. Cosmochim. Acta 37, 700-702.

Dickinson T., Taylor G.J., Keil K., Schmitt R.A., Hughes S.S. and Smith M.R. (1985) Apollo 14 aluminous mare basalts and their possible relationship to KREEP. Proc. 15th Lunar Planet. Sci. Conf. in J. Geophys. Res. 90, C365-C374.

Duncan A.R., McKay S.M., Stoeser J.W., Lindstrom M.M., Lindstrom D.J., Fruchter J.S. and Goles G.G. (1975a) Lunar polymict brecia 14321: a compositional study of its principal components. Geochim. Cosmochim. Acta 39, 247-260.

Duncan A.R., Grieve R.A.F. and Weill D.F. (1975b) The life and times of Big Bertha: lunar breccia 14321. Geochim. Cosmochim. Acta 39, 265-273.

Eisentraut K.J., Black M.S., Hilman F.D., Sievers R.F. and Ross W.D. (1972) Beryllium and chromium abundances in Fra Mauro and Hadley-Apennine lunar samples. Proc. 3rd Lunar Sci. Conf. 1327-1333.

Eldridge J.S., O'Kelley G.D. and Northcutt K.J. (1972) Abundances of primordial and cosmogenic radionuclides in Apollo 14 rocks and fines. Proc. 3rd Lunar Sci. Conf. 1651-1658.

Fireman E.L., D'Amico J., DeFelice J. and Spannagel G. (1972) Radioactivities in returned lunar materials. Proc. 3rd Lunar Sci. Conf. 1747-1762.

Gancarz A.J., Albee A.L. and Chodos A.A. (1971) Petrologic and mineralogic investigation of some crystalline rocks returned by Apollo 14 mission. Earth Planet. Sci. Lett. 12, 1-18.

Gay P., Brown M.G. and Muir I.D. (1972) Mineralogical and petrographic features of two Apollo 14 rocks. Proc. 3rd Lunar Sci. Conf. 351-362.

Gose W.A., Pearce G.W., Strangway D.W. and Larson E.E. (1972) Magnetic properties of Apollo 14 breccias and their correlation with metamorphism. Proc. 3rd Lunar Sci. Conf. 2387-2395.

Grieve R.A., McKay G.A., Smith H.D. and Weill D.F. (1975) Lunar polymict breccia 14321: a petrographic study. Geochim Cosmochim Acta 39, 229-245.

Hargraves R.B. and Dorety N. (1972) Natural remanent magnetization in lunar breccia 14321. Proc. 3rd Lunar Sci. Conf. 2417-2421.

Hohenberg C,M., Marti K., Podosek F.A., Reedy R.C. and Shirck J.R. (1978) Comparison between observed and predicted cosmogenic noble gases in lunar samples. Proc. 9th Lunar Sci. Conf. 2311-2344.

Hunter R.H. and Taylor L.A. (1983) The magma ocean from the Fra Mauro shoreline: An overview of the Apollo 14 crust. Proc. 13th Lunar Planet. Sci. Conf. in J. Geophys. Res. 88, A591-A602.

Hutcheon I.D., Phakey P.P. and Prioce P.B. (1972) Studies bearing on the history of lunar breccias. Proc. 3rd Lunar Sci. Conf. 2845-2866.

Imamura M., Nishiizumi K., Honda M., Finkel R.C., Arnold J.R. and Kohl C.P. (1974) Depth profiles of ⁵³Mn in lunar rocks and soils. Proc. 5th Lunar Sci. Conf. 2093-2103.

James (1980) Rocks of the early lunar crust. Proc. 11th Lunar Planet. Sci. Conf. 365-393.

Keith J.E., Clark R.S. and Richardson K.A. (1972) Gammaray measurements of Apollo 12, 14 and 15 lunar samples. Proc. 3rd Lunar Sci. Conf. 1671-1680.

Kohl C.P., Murrell M.T., Russ G.P. and Arnold J.R. (1978) Evidence for the constancy of the solar cosmic ray flux over the past ten million years: ⁵³Mn and ²⁶Al measurements. Proc. 9th Lunar Planet. Sci. Conf. 2299-2310.

Lally J.S., Fischer R.M., Christie J.M., Griggs D.T., Heuer A.H., Nord G.L. and Radcliffe S.V. (1972) Electron petrography of Apollo 14 and 15 rocks. Proc. 3rd Lunar Sci. Conf. 401-422.

Lindstrom M.M., Duncan A.R., Fruchter J.S., McKay S.M., Stoeser J.W., Goles G.G. and Lindstrom D.J. (1972) Compositional characteristics of some Apollo 14 clastic materials. Proc. 3rd Lunar Sci. Conf. 1201-1214.

Lindstrom M.M., Knapp S.A., Shervais J.W. and Taylor L.A. (1984) Magnesian anorthosites and associated troctolites and dunite in Apollo 14 breccias. Proc. 15th Lunar Planet. Sci. Conf. in J. Geophys. Res. 89, C41-C49.

LSPET (1971) Preliminary examination of lunar samples from Apollo 14. Science 173, 681-693.

Lugmair G.W. and Marti K. (1972) Exposure ages and neutron capture record in lunar samples from Fra Mauro. Proc. 3rd Lunar Sci. Conf. 1891-1897.

Mark R.K., Cliff R.A., Lee-Hu C. and Wetherill G.W. (1973) Rb-Sr studies of lunar breccias and soils. Proc. 4th Lunar Sci. Conf. 1785-1795. Mark R.K., Lee-Hu C-N. and Wetherill G.W. (1974) Equilibration and ages: Rb-Sr studies of breccias 14321 and 15265. Proc. 5th Lunar Sci. Conf. 1477-1485.

Mark R.K., Lee-Hu C. and Wetherill G.W. (1975) More on Rb-Sr in lunar breccia 14321. Proc. 6th Lunar Sci. Conf. 1501-1507.

Matsuda A., Nakamura N., Kurasawa H. and Tanaka T. (1972) Precise determination of rare-earth elements in the Apollo 14 and 15 samples. Proc. 3rd Lunar Sci. Conf. 1307-1313.

Meyer C. and Yang S.V. (1988) Tungsten-bearing yttrobetafite in lunar granophyre. Am. Mineral. 73, 1420-1425.

Meyer C. and King C.D. (1979) Breccia Guidebook #114321. JSC 14753

Meyer C., Compston W. and Williams I.S. (1985) Lunar zircon and the closure age of the lunar crust (abs). LPS XVI, 557-558.

Meyer C., Williams I.S. and Compston W. (1989) ²⁰⁷Pb/ ²⁰⁶Pb ages of zircon-containing rock fragments indicate continuous magrnatism in the lunar crust from 4350 to 3900 million years (abs). LPS XX, 691-692.

Meyer C., Williams I.S. and Compston W. (1989) Zirconcontaining rock fragments within Apollo 14 breccias indicate serial magmatism from 4350 to 4000 million years (abs). *In* Workshop on Moon in Transition: Apollo 14, KREEP, and evolved lunar rocks. LPI Tech Rpt. 89-03, 75-78. Lunar Planet. Inst.

Meyer C., Williams I.S. and Compston W. (1996) Uraniumlead ages for lunar zircons: Evidence for a prolonged period of granophyre formation from 4.32 to 3.88 Ga. Meteoritics & Planet. Sci. 31, 370-387.

Morgan J.W., Ganapathy R. and Krahenbuhl U. (1975a) Meteoritic trace elements in lunar rock 14321,184. Geochim. Cosmochim. Acta 39, 261-264.

Morgan J.W., Laul J.C., Krahenbuhl U., Ganapathy R. and Anders E. (1972) Major impacts on the moon: Characterization from trace elements in Apollo 12 and 14 samples. Proc. 3rd Lunar Sci. Conf. 1377-1395.

Morrison D.A., McKay D.S., Heiken G.H. and Moore H.J. (1972) Microcraters on lunar rocks. Proc. 3rd Lunar Sci. Conf. 2767-2791.

Neal C.R. (2007) Mining the literature for new data: Expanding the Apollo 14 high-alumina basalt isotope database. (abs) Lunar Planet. Sci. XXXVIII #2398 Neal C.R., Taylor L.A. and Lindstrom M.M. (1988a) Importance of lunar granite and KREEP in very high potassium (VHK) basalt petrogenesis. Proc. 18th Lunar Planet. Sci. Conf. 121-137. Lunar Planet. Inst.

Neal C.R., Taylor L.A. and Lindstrom M.M. (1988b) Apollo 14 mare basalt petrogenesis: assimilation of KREEP-like components by a fractionating magma. Proc. 18th Lunar Planet. Sci. Conf. 139-153. Lunar Planet. Inst.

Neal C.R., Taylor L.A., Schmitt R.A., Hughes S.S. and Lindstrom M.M. (1989d) High alumina (HA) and very high potassium (VHK) basalt clasts from Apollo 14 breccia, Part 1: Mineralogy and petrology: Evidence of crystallization from evolving magmas. Proc. 19th Lunar Planet. Sci. Conf. 137-145. Lunar Planet. Inst.

Neal C.R., Taylor L.A., Schmitt R.A., Hughes S.S. and Lindstrom M.M. (1989d) High alumina (HA) and very high potassium (VHK) basalt clasts from Apollo 14 breccia, Part 2 – whole rock geochemistry: Further evidence for combined assimilation and fractional crystallization within the lunar crust. Proc. 19th Lunar Planet. Sci. Conf. 147-161. Lunar Planet. Inst.

Neal C.R. and Taylor L.A. (1991) Evidence for metasomatism of the lunar highlands and the origin of whitlockite. Geochim. Cosmochim. Acta 55, 2965-2980.

Neal C.R., Shih C-Y., Reese Y., Nyquist L.E. and Kramer G.Y. (2006) Derivation of Apollo 14 high-Al basalts from distinct source regions at discrete times: New constraints. (abs) Lunar Planet. Sci. XXXVII #2003

Neal C.R. and Kramer G.Y. (2006) The petrogenesis of the Apollo 14 high-Al mare basalts. Am. Mineral. 91, 1521-1535.

Nelen J., Noonan A. and Fredriksson K. (1972) Lunar glasses breccias and chondrules. Proc. 3rd Lunar Sci. Conf. 723-737.

Nemchin A.A., Whitehouse M.J., Pidgeon R.T. and Meyer C. (2006) Oxygen isotopic signature of 4.4 - 3.9 Ga zircons as a monitor of differentiation processes on the Moon. Geochim. Cosmochim. Acta 70, 1864-1872.

Nemchin A.A., Pidgeon R.T., Whitehouse M.J., Vaughan J.P. and Meyer C. (2008) SIMS study of zircons from Apollo 14 and 17 breccias: Implications for the evolution of lunar KREEP. *Geochim. Cosmochim. Acta* **72**, 668-689.

Nyquist L.E., Shih C-Y., Bansal B., Wiesmann H. and Wooden J. (1983) Formation of a lunar granite 4.1 AE ago. (abs) Lunar Planet. Sci. XIV 576-577.

Nyquist L.E. and Shih C-Y. (1972) The isotopic record of lunar volcanism. Geochim. Cosmochim. Acta 56, 2213-2234.

Papanastassiou D.A. and Wasserburg G.J. (1971b) Rb-Sr ages of igneous rocks from the Apollo 14 mission and the age of the Fra Mauro Formation. Earth Planet. Sci. Lett. 12, 36-48.

Palme H., Baddenhausen H., Blum K., Cendales M., Dreibus G., Hofmeister H., Kmse H., Palme C., Spettel B. Vilcsek E. and Wanke H. (1978) New data on lunar samples and achondrites and a comparison of the least fractionated samples from the earth, the moon, and the eucrite parent body. Proc. 9th Lunar Planet. Sci. Conf. 25-57.

Pearce G.W., Strangway D.W. and Gose W.A. (1972) Remanent magnetism of the lunar surface. Proc. 3rd Lunar Sci. Conf. 2449-2464.

Pearce G.W., Gose W.A. and Strangway D.W. (1973) Magnetic studies on Apollo 15 and 16 lunar samples. Proc. 4th Lunar Sci. Conf. 3045-3076.

Phinney W.C., McKay D.S., Simonds C.H. and Warner J.L. (1976) Lithification of vitric- and elastic-matrix breccias: SEM photography. Proc. 7th Lunar Sci. Conf. 2469-2492.

Rancitelli L.A., Perkins R.W., Felix W.D. and Wogman N.A. (1972) Lunar surface processes and cosmic ray characterization from Apollo 12-15 lunar samples analyses. Proc. 3rd Lunar Sci. Conf. 1681-1691.

Scoon J.H. (1972) Chemical analysis of lunar samples 14003, 14311 and 14321. Proc. 3rd Lunar Sci. Conf. 1335-1336.

Shervais J.W., Taylor L.A. and Laul J.C. (1983) Ancient crustal components in the Fra Mauro breccias. Proc. 14th Lunar Planet. Sci. Conf. in J. Geophys. Res. 88, B77-B92.

Shervais J.W., Knapp S. and Taylor L.A. (1984) Breccia Guidebook No.7 14321. JSC 19492.

Shervais J.W., Taylor L.A. and Lindstrom M.M. (1985) Apollo 14 mare basalts: petrology and geochemistry of clasts from consortium breccia 14321. Proc. 15th Lunar Planet. Sci. Conf. in J. Geophys. Res. 89, C375-C395.

Shervais J.W., Taylor L.A., Laul J.C., Shih C.-Y. and Nyquist L.E. (1985) Very high potassium (VHK) basalt: Complications in lunar mare petrogenesis. Proc. 16th Lunar Planet. Sci. Conf. in J. Geophys. Res. 90, D3-D18.

Shervais J.W., Taylor L.A. and Lindstrom M.M. (1988) Olivine vitrophyres: A nonpristine high-Mg component in Lunar breccia 14321. Proc. 18th Lunar Planet. Sci. Conf. 45-57. Lunar Planet. Inst.

Shervais J.W., Vetter S.K. and Lindstrom M.M. (1990) Chemical differences between small subsamples of Apollo 15 olivine-normative basalts. Proc. 20th Lunar Planet. Sci. Conf. 109-126. Lunar Planet. Inst.

Shervais J.W. and Stuart J.B. (1995) Ion microprobe studies of lunar highland cumulate rocks: New results (abs). LPS XXVI, 1285-1286.

Shervais J.W. and McGee J.J. (1997) KREEP in the western lunar highlands: An ion microprobe study of alkali and Mg suite cumulates from the Apollo 12 and 14 sites. (abs) LPSC XXVIII, 1301-1302.

Shervais J.W. and McGee J.J. (1998a) KREEP in the western lunar highlands: ion and electron microprobe study of alkali suite anorthosites and norites from Apollo 12 and 14. Am. Min.

Shervais J.W. and McGee J.J. (1998b) Ion and electron microprobe study of trctolites, norites and anorthosites from Apollo 14: Evidence for urKREEP assimilation during petrogenesis of Apollo 14 Mg-suite rocks. Geochim. Cosmochim. Acta 62, 3009-3023.

Shih C.-Y., Nyquist L.E. and Wiesmann H. (1993) K-Ca chronology of lunar granites. Geochim. Cosmochim. Acta 57, 4827-4841.

Shih C.-Y., Nyquist L.E., Bogard D.D., Wooden J.L., Bansal B.M. and Wiesmann H. (1985) Chronology and petrogenesis of a 1.8 g lunar granite clast: 14321,1062. Geochim. Cosmochim. Acta 49, 411-426.

Simonds C.H., Phinney W.C., Warner J.L., McGee P.E., Geeslin J., Brown R.W. and Rhodes J.M. (1977) Apollo 14 revisited, or breccias aren't so bad after all. Proc. 8th Lunar Sci. Conf. 1869-1893.

Snyder G.A., Neal C.R., Taylor L.A. and Halliday A.N. (1995b) Processes involved in the formation of magnesiansuite plutonic rocks from the highlands of the Earth's moon. J. Geophys. Res. 100, 9365-9388.

Stadermann F.J., Heusser E., Jessberger E.K., Lingner S. and Stoffler D. (1991) The case for a younger Imbrium basin: New 40Ar-39Ar ages of Apollo 14 rocks. Geochim. Cosmochim. Acta 55, 2339-2349. 14063

Stasheim A., Jackson P.F.S., Coetzee J.H.J., Strelow F.W.E., Wybenga F.T., Gricius A.J., Kokot M.L. and Scott R.H. (1972) Analysis of lunar samples 14163, 14259 and 14321 with isotopic data for 7Li/6Li. Proc. 3rd Lunar Sci. Conf. 1337-1342.

Steele I.M. (1972) Chromian spinels from Apollo 14 rocks. Earth Planet. Sci. Lett. 14, 190-194.

Steele I.M. and Smith J.V. (1975) Minor elements in olivine as a petrologic indicator. Proc. 6th Lunar Sci. Conf. 451-467.

Stoffler D. and Knoll H-D. (1977) Composition and origin of plagioclase, pyroxene and olivine clasts of lunar breccias 14006, 14063, 14066, 14311, 14320 and 14321. Proc. 8th Lunar Sci.Conf. 1849-1867.

Stöffler D. and Ryder G. (2001) Stratigraphy and isotopic ages of lunar geologic units: Chronological standard for the inner solar system. Space Science Rev. 96, 9-54.

Sutton R.L., Hait M.H. and Swann G.A. (1972) Geology of the Apollo 14 landing site. Proc. 3rd Lunar Sci. Conf. 27-38.

Swann G.A., Trask N.J., Hait M.H. and Sutton R.L. (1971a) Geologic setting of the Apollo 14 samples. Science 173, 716-719.

Swann G.A., Bailey N.G., Batson R.M., Eggleton R.E., Hait M.H., Holt H.E., Larson K.B., Reed V.S.,

Schaber G.G., Sutton R.L., Trask N.J., Ulrich G.E. and Wilshire H.G. (1977) Geology of the Apollo 14 landing site in the Fra Mauro Highlands. U.S.G.S Prof. Paper 880.

Swann G.A., Bailey N.G., Batson R.M., Eggleton R.E., Hait M.H., Holt H.E., Larson K.B., McEwen M.C., Mitchell E.D., Schaber G.G., Schafer J.P., Shepard A.B., Sutton R.L., Trask N.J., Ulrich G.E., Wilshire H.G. and Wolfe E.W. (1972) 3. Preliminary Geologic Investigation of the Apollo 14 landing site. *In* Apollo 14 Preliminary Science Rpt. NASA SP-272. pages 39-85.

Taylor D.J., McKeegan K.D., Harrison T.M. and McCulloch M. (2007) 176Lu-176Hf in Lunar Zircon: Identification of an early enriched reservoir on the Moon (abs#2130). Lunar Planet. Sci. 38, Luny Planet. Inst. Houston.

Taylor D.J., McKeegan K.D. and Harrison T.M. (2007) Correlated study og Lu-Hf and REE in lunar zircons, with implication for the differentiation age of KREEP (abs). Meterotical Soc. Tucson

Taylor S.R., Kaye M., Muir P., Nance W., Rudowski R. and Ware N. (1972) Composition of the lunar uplands: Chemistry of Apollo 14 samples from Fra Mauro. Proc. 3rd Lunar Sci. Conf. 1231-1249.

Takeda H., Miyamoto M. and Ishii T. (1980) Composition of basaltic clasts in lunar and eucrite polymict breccias. Proc. 11th Lunar Planet. Sci. Conf. 135-147.

Turner G., Huneke J.C., Podosek F.A. and Wasserburg G.J. (1971) 40Ar-39Ar ages and cosmic ray exposure ages of Apollo 14 samples. Earth Planet. Sci. Lett. 12, 19-35.

Twedell D., Feight S., Carlson I. and Meyer C. (1978) Lithologic maps of selected Apollo 14 breccia samples. Curators Office. JSC 13842

Wahlen M., Honda M., Imamura M., Fruchter J.S., Finkel R.C., Kohl C.P., Arnold J.R. and Reedy R.C. (1972) Cosmogenic nuclides in football-sized rocks. Proc. 3rd Lunar Sci. Conf. 1719-1732.

Wanke H., Baddenhausen H., Balacescu A., Teschke F., Spettel B., Dreibus G., Palme H., Quijano-Rico M., Kruse H., Wlotzka F. and Begemann F. (1973) Multielement analysis of lunar samples and some implications of the results. Proc. 3rd Lunar Sci. Conf. 1251-1268.

Ware N.G. and Green D.H. (1977) Troctolitic and basaltic clasts from a Fra Mauro breccia. *In* Lunar Sample Studies. NASA SP-418, 49. JSC

Warner J.L. (1972) Metamophism of Apollo 14 breccias. Proc. 3rd Lunar Sci. Conf. 623-643.

Warner J.L. and Heiken G. (1972) C u r a t o r s Office

Warren P.H. (1993) A concise compilation of petrologic information on possibly pristine nonmare Moon rocks. Am. Mineral. 78, 360-376.

Warren P.H., Taylor G.J., Keil K., Marshall C. and Wasson J.T. (1981) Foraging westward for pristine nonmare rocks: Complications for petrogenetic models. Proc. 12th Lunar Planet. Sci. Conf. 21-40.

Warren P.H., Taylor G.J., Keil K., Shirley D.N. and Wasson J.T. (1983b) Petrology and chemistry of two large granite clasts from the Moon. Earth Planet. Sci. Lett. 64, 175-185.

Warren P.H., Taylor G.J., Keil K., Kalyemeyn G.W., Rosener P.S. and Wasson J.T. (1983c) Sixth foray for pristine nonmare rocks and an assessment of the diversity of lunar anorthosites. Proc. 13th Lunar Planet. Sci. Conf. in J. Geophys. Res. 88, A615-A630.

Warren P.H., Taylor G.J., Keil K., Kallemeyn G.W., Shirley D. and Wasson J.T. (1983d) Seventh foray: Whitlockiterich lithologies, a diopside-bearing troctolitic anorthosite, ferroan anorthosite and KREEP. Proc. 14th Lunar Planet. Sci. Conf. in J. Geophys. Res. 88, B151-B164.

Warren P.H., Kallemeyn G.W. and Kyte F.T. (1997) Siderophile element evidence indicates that Apollo 14 high-Al mare basalts are not impact melts. (abs) Lunar Planet. Sci. XXVIII, 1501-1502.

Williams R.J. (1972) The lithification of metamorphism of lunar breccias. Earth Planet. Sci. Lett. 16, 250-256.

Wilshire H.G. and Jackson E.D. (1972) Petrology and stratigraphy of the Fra Mauro Formation at the Apollo 14 site. U.S. Geol. Survey Prof. Paper 785.

York D., Kenyon W.J. and Doyle R.J. (1972) 40Ar-39Ar ages of Apollo 14 and 15 samples. Proc. 3rd Lunar Sci. Conf. 1613-1622.