65757 – 26.2 grams
65767 – 17.5 grams
Ferroan Anorthosite Clasts

Figure 1: Photo of 65757. Scale in mm. S72-47701

Figure 2: Photo of 65767. Scale in mm. S72-48954
Introduction
These two glassy objects contain relatively large white clasts (figures 1 and 2). They were collected as rake samples – see section on 65701.

Petrography
Dowty et al. (1974), Warner et al. (1976) give brief descriptions of anorthosite clasts, including pyroxene diagrams, indicating that the white clasts are ferroan anorthosite (see figures). Warren (1994) calls them pristine. Plagioclase is An$_{98}$.

Chemistry
The analysis of 65757 by Korotev (1994) is very KREEP-y and must be of glass matrix. It also has extremely high Ni, Ir and Au. The analyses of the anorthosites are by Warner et al. (1976) indicating they are mostly very calcic plagioclase.

References for 65757

Keil K., Dowty E., Prinz M. and Bunch T.E. (1972) Description, classification and inventory of 151 Apollo 16 rake samples from the LM area and station 5. Curator’s Catalog, JSC.

Figure 7: Thin section photo of 65767 by C Meyer. 2 mm across
Table 1. Chemical composition of 65757

<table>
<thead>
<tr>
<th>Reference</th>
<th>Dowty74</th>
<th>Korotev87</th>
<th>McKinley</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO2 %</td>
<td>44.4</td>
<td>(a)</td>
<td></td>
</tr>
<tr>
<td>TiO2</td>
<td>0.01</td>
<td>(a)</td>
<td></td>
</tr>
<tr>
<td>Al2O3</td>
<td>35.1</td>
<td>(a)</td>
<td>20.1</td>
</tr>
<tr>
<td>FeO</td>
<td>0.5</td>
<td>(a)</td>
<td>11.2</td>
</tr>
<tr>
<td>MgO</td>
<td>0.39</td>
<td>(a)</td>
<td>10.9</td>
</tr>
<tr>
<td>CaO</td>
<td>19.1</td>
<td>(a)</td>
<td>12.2</td>
</tr>
<tr>
<td>Na2O</td>
<td>0.42</td>
<td>(a)</td>
<td></td>
</tr>
<tr>
<td>K2O</td>
<td>0.02</td>
<td>(a)</td>
<td></td>
</tr>
<tr>
<td>P2O5</td>
<td>0.06</td>
<td>(a)</td>
<td></td>
</tr>
<tr>
<td>S %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sc ppm</td>
<td>11.6</td>
<td>(b)</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cr</td>
<td>1210</td>
<td>(b)</td>
<td></td>
</tr>
<tr>
<td>Co</td>
<td>147</td>
<td>(b)</td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td>2520</td>
<td>(b)</td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ga</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ge ppb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>As</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Se</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ru</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pd ppb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ag ppb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cd ppb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In ppb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sn ppb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sb ppb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Te ppb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cs ppm</td>
<td>310</td>
<td>(b)</td>
<td></td>
</tr>
<tr>
<td>Ba</td>
<td>29.2</td>
<td>(b)</td>
<td></td>
</tr>
<tr>
<td>La</td>
<td>13.8</td>
<td>(b)</td>
<td></td>
</tr>
<tr>
<td>Ce</td>
<td>8.83</td>
<td>(b)</td>
<td></td>
</tr>
<tr>
<td>Pr</td>
<td>1.3</td>
<td>(b)</td>
<td></td>
</tr>
<tr>
<td>Nd</td>
<td>9.7</td>
<td>(b)</td>
<td></td>
</tr>
<tr>
<td>Sm</td>
<td>W ppb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eu</td>
<td>Re ppb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gd</td>
<td>Os ppb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tb</td>
<td>Ir ppb</td>
<td>65</td>
<td>(b)</td>
</tr>
<tr>
<td>Dy</td>
<td>Pt ppb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ho</td>
<td>Au ppb</td>
<td>52</td>
<td>(b)</td>
</tr>
<tr>
<td>Er</td>
<td>Th ppm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tm</td>
<td>U ppm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hf</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ta</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W ppb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Re ppb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Os ppb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ir ppb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pt ppb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Au ppb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Th ppm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U ppm</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Chemical composition of 65767

<table>
<thead>
<tr>
<th>Reference</th>
<th>Dowty74</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO2 %</td>
<td>44.5</td>
</tr>
<tr>
<td>TiO2</td>
<td>0.03</td>
</tr>
<tr>
<td>Al2O3</td>
<td>35.0</td>
</tr>
<tr>
<td>FeO</td>
<td>0.41</td>
</tr>
<tr>
<td>MnO</td>
<td>0.01</td>
</tr>
<tr>
<td>MgO</td>
<td>0.30</td>
</tr>
<tr>
<td>CaO</td>
<td>19.3</td>
</tr>
<tr>
<td>Na2O</td>
<td>0.44</td>
</tr>
<tr>
<td>K2O</td>
<td>0.03</td>
</tr>
<tr>
<td>P2O5</td>
<td>0.03</td>
</tr>
<tr>
<td>S %</td>
<td></td>
</tr>
</tbody>
</table>

65757
- **26.2 grams**
- **.0 25 g**
- **1 PB**
- **.11 0.4 g**

65767
- **17.5 grams**
- **.0 17.1 g**
- **1 PB**
- **.2 0.2 g**

Ryder G. and Norman M.D. (1980) Catalog of Apollo 16 rocks (3 vol.). Curator’s Office pub. #52, JSC #16904
