70035
Ilmenite Basalt
5765 grams

Introduction
Sample 70035 is a vesicular, medium–grained, high-Ti basalt (figure 1). It was collected from a boulder on the rim of a subdued crater about 45 meters east northeast of the LM. This large sample was not “oriented”. The bottom surface of this sample is coated with glass (figure 11). One side is flat (from the boulder?). The other surfaces are rounded and have micrometeorite pits.

70035 is 3.7 b.y. old and has been exposed on the lunar surface for ~ 100 m.y. It is typical of the high Ti basalts from the moon and has been used for several public displays (figure 12).

Mineralogical Mode of 70035

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Olivine</td>
<td>0.9 vol. %</td>
<td>2.5</td>
<td>26</td>
</tr>
<tr>
<td>Pyroxene</td>
<td>47.5</td>
<td>46</td>
<td>56.6</td>
</tr>
<tr>
<td>Plagioclase</td>
<td>25.9</td>
<td>26</td>
<td>21.6</td>
</tr>
<tr>
<td>Opaques</td>
<td>23.7</td>
<td>22</td>
<td>15.4</td>
</tr>
<tr>
<td>Silica</td>
<td>1.6</td>
<td></td>
<td>1.6</td>
</tr>
<tr>
<td>Mesostasis</td>
<td>0.4</td>
<td>2</td>
<td>4.4</td>
</tr>
<tr>
<td>Vesicles</td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 2: Photomicrographs of thin section 70035,14. Each view of same area, 2.7 mm wide. a) Partially polarized light #S79-26730, b) crossed-polarized light #S79-26631, c) reflected light #S79-26729.

Petrography
Ridley (1973), Weigand (1973), McGee et al. (1977) and Neal and Taylor (1993) have described this large basalt. It is a hypidiomorphic granular basalt with large anhedral clinopyroxene enclosing armalcolite, ilmenite, ulvöspinel and chrome spinel. Interstitial plagioclase encloses ilmenite and olivine (figure 2). The mesostasis includes cristobalite, K-feldspar, tranquillityite, ilmenite, ulvöspinel, troilite and pale brown granitic glass.

El Goresy and Ramdohr (1975) showed that subsolidus reduction of the opaques in 70035 and other Apollo 17 basalts occurred below 830 deg. C. The cooling rate was less than 1 deg. C /hr. (Usselman et al. 1975).

Mineralogy
Pyroxene: Weigand (1973) and Papike et al. (1973) give pyroxene data (figure 3). Augite cores contains up to 3.5 % TiO₂, 4.3 % Al₂O₃ and 1% Cr₂O₃ (Weigand 1973).

Opaques: El Goresy and Ramdohr (1975) studied the subsolidus reduction of ilmenite to rutile, spinel and metallic iron in 70035. They also found that the ulvöspinel reduced to form exsolution of ilmenite and metallic iron.

Glass: Ilmenite in 70035 contains glass inclusions of two types, a) 6-7% K₂O and b) 0.4% K₂O (Roedder and Weiblen 1975).
Metallic iron: El Goresy and Ramdohr (1975) reported a network of metallic iron that penetrates cracks and cleavages through opaque phases as well as silicates. The composition of iron in 70017 has not been reported.

Chemistry
The chemical composition of 70035 is given in table 1. It is typical of Apollo 17 basalts (figures 4 and 5). The trace element content indicates that it is a type A basalt (figure 6).

Radiogenic age dating
Stettler et al. (1973), Evensen et al. (1973a, b) and Nyquist et al. (1974) have dated 70035 (see figures 7-9 and summary table). The ages of basalts from Apollo 17 are similar to those of Apollo 11 (Paces et al. 1991).

Cosmogenic isotopes and exposure ages
Stettler et al. (1973) determined an exposure age of 95-100 m.y. by the 38Ar method. Drozd et al. (1977) determined 122 ± 3 m.y. by 81Kr method.

Other Studies
Pearce et al. (1974) determined the magnetic properties of 70035 and found that Apollo 17 basalts contained more metallic iron than most other basalts (consistent with petrology).

Processing
According to the Apollo 17 Catalog (Butler 1973; page 39), 70035 was opened in the Command Module and studied by Jack Schmitt who picked it up with bare hands (permission granted).

This rock is discussed in great detail in the Apollo 17 catalog by Neal and Taylor (1993). It has been sawn on two occasions (1973 and 1981) (figures 10-11). Nine pieces are used for public display (figure 12).

List of Photos #s for 70035
S72-56381 – 386
S72-56418 – 448 B&W
S75-34392 – 398 color
S79-26729 – 731 TS
S81-27728 – 729 color
Summary of Age Data for 70035

<table>
<thead>
<tr>
<th></th>
<th>Rb-Sr</th>
<th>Ar-Ar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evensen et al. 1973a,b</td>
<td>3.82 ± 0.06</td>
<td></td>
</tr>
<tr>
<td>Stettler et al. 1973</td>
<td></td>
<td>3.75 ± 0.07</td>
</tr>
<tr>
<td>Nyquist et al. 1974</td>
<td></td>
<td>3.73 ± 0.11</td>
</tr>
</tbody>
</table>

Caution: Old decay constants
Table 1. Chemical composition of 70035.

<table>
<thead>
<tr>
<th>Element</th>
<th>Reference/Weight</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO2 %</td>
<td>LSPET 73, Rhodes76, Wiesmann75</td>
<td>37.8 (a)</td>
<td>13 (a)</td>
<td>13 (b)</td>
</tr>
<tr>
<td>TiO2</td>
<td>Shih 75, Hughes85, Evenson73</td>
<td>13 (a)</td>
<td>13 (a)</td>
<td>13 (b)</td>
</tr>
<tr>
<td>AI2O3</td>
<td>Rhodes76, Wiesmann75</td>
<td>8.85 (a)</td>
<td>8.85 (a)</td>
<td></td>
</tr>
<tr>
<td>FeO</td>
<td>Hughes85, Evenson73</td>
<td>18.5 (a)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MnO</td>
<td>Shih 75, Hughes85, Evenson73</td>
<td>0.28 (a)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td>Shih 75, Hughes85, Evenson73</td>
<td>9.89 (a)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CaO</td>
<td>Hughes85, Evenson73</td>
<td>10.1 (a)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na2O</td>
<td>Hughes85, Evenson73</td>
<td>0.35 (a)</td>
<td>0.36 (a)</td>
<td>0.31 (a)</td>
</tr>
<tr>
<td>K2O</td>
<td>Hughes85, Evenson73</td>
<td>0.06 (a)</td>
<td>0.04 (a)</td>
<td>0.05 (b)</td>
</tr>
<tr>
<td>P2O5</td>
<td>Hughes85, Evenson73</td>
<td>0.05 (a)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S %</td>
<td>Hughes85, Evenson73</td>
<td>0.15 (a)</td>
<td></td>
<td>0.158 (b)</td>
</tr>
<tr>
<td>Sc ppm</td>
<td>Hughes85, Evenson73</td>
<td>82.5 (c)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>Hughes85, Evenson73</td>
<td>4174 (a)</td>
<td>3890 (a)</td>
<td>3634 (b)</td>
</tr>
<tr>
<td>Co</td>
<td>Hughes85, Evenson73</td>
<td>20.7 (c)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td>Hughes85, Evenson73</td>
<td>2 (a)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>Hughes85, Evenson73</td>
<td>4 (a)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>Hughes85, Evenson73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ga</td>
<td>Hughes85, Evenson73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ge ppb</td>
<td>Hughes85, Evenson73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>As</td>
<td>Hughes85, Evenson73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Se</td>
<td>Hughes85, Evenson73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rb</td>
<td>Hughes85, Evenson73</td>
<td>0.7 (a)</td>
<td>0.461 (a)</td>
<td>0.628 (b)</td>
</tr>
<tr>
<td>Sr</td>
<td>Hughes85, Evenson73</td>
<td>176 (a)</td>
<td>174 (a)</td>
<td>161 (b)</td>
</tr>
<tr>
<td>Y</td>
<td>Hughes85, Evenson73</td>
<td>75 (a)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zr</td>
<td>Hughes85, Evenson73</td>
<td>205 (a)</td>
<td>217 (a)</td>
<td>200 (b)</td>
</tr>
<tr>
<td>Nb</td>
<td>Hughes85, Evenson73</td>
<td>20 (a)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mo</td>
<td>Hughes85, Evenson73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ru</td>
<td>Hughes85, Evenson73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rh</td>
<td>Hughes85, Evenson73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pd ppb</td>
<td>Hughes85, Evenson73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ag ppb</td>
<td>Hughes85, Evenson73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cd ppb</td>
<td>Hughes85, Evenson73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In ppb</td>
<td>Hughes85, Evenson73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sn ppb</td>
<td>Hughes85, Evenson73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sb ppb</td>
<td>Hughes85, Evenson73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Te ppb</td>
<td>Hughes85, Evenson73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cs ppm</td>
<td>Hughes85, Evenson73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ba</td>
<td>Hughes85, Evenson73</td>
<td>62.1 (b)</td>
<td>79.5 (b)</td>
<td>62.1 (b)</td>
</tr>
<tr>
<td>La</td>
<td>Hughes85, Evenson73</td>
<td>4.79 (b)</td>
<td>7.04 (b)</td>
<td></td>
</tr>
<tr>
<td>Ce</td>
<td>Hughes85, Evenson73</td>
<td>16.4 (b)</td>
<td>23.4 (b)</td>
<td></td>
</tr>
<tr>
<td>Pr</td>
<td>Hughes85, Evenson73</td>
<td>18.2 (b)</td>
<td>25.9 (b)</td>
<td></td>
</tr>
<tr>
<td>Nd</td>
<td>Hughes85, Evenson73</td>
<td>7.63 (b)</td>
<td>10.5 (b)</td>
<td></td>
</tr>
<tr>
<td>Sm</td>
<td>Hughes85, Evenson73</td>
<td>1.82 (b)</td>
<td>1.88 (b)</td>
<td></td>
</tr>
<tr>
<td>Eu</td>
<td>Hughes85, Evenson73</td>
<td>11 (b)</td>
<td>13.5 (b)</td>
<td></td>
</tr>
<tr>
<td>Gd</td>
<td>Hughes85, Evenson73</td>
<td>14.1 (b)</td>
<td>18.8 (b)</td>
<td></td>
</tr>
<tr>
<td>Tb</td>
<td>Hughes85, Evenson73</td>
<td>8.4 (b)</td>
<td>11 (b)</td>
<td></td>
</tr>
<tr>
<td>Dy</td>
<td>Hughes85, Evenson73</td>
<td>7.79 (b)</td>
<td>10 (b)</td>
<td></td>
</tr>
<tr>
<td>Ho</td>
<td>Hughes85, Evenson73</td>
<td>1.17 (b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Er</td>
<td>Hughes85, Evenson73</td>
<td>4.9 (c)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tm</td>
<td>Hughes85, Evenson73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yb</td>
<td>Hughes85, Evenson73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lu</td>
<td>Hughes85, Evenson73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hf</td>
<td>Hughes85, Evenson73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ta</td>
<td>Hughes85, Evenson73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W ppb</td>
<td>Hughes85, Evenson73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Re ppb</td>
<td>Hughes85, Evenson73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Os ppb</td>
<td>Hughes85, Evenson73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ir ppb</td>
<td>Hughes85, Evenson73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pt ppb</td>
<td>Hughes85, Evenson73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Au ppb</td>
<td>Hughes85, Evenson73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Th ppm</td>
<td>Hughes85, Evenson73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U ppm</td>
<td>Hughes85, Evenson73</td>
<td>0.091 (b)</td>
<td>0.12 (b)</td>
<td></td>
</tr>
</tbody>
</table>

technique: (a) XRF, (b) IDMS, (c) INAA
Figure 11: Additional saw cuts of 70035 made in 1981 (see flow diagram). Note glass coating in this side. NASA S81-27729. Cube is 1 inch.

Figure 10: First saw cuts of 70035 made in 1972. Cube is 1 cm. NASA S75-34392. Compare with figure 1.
Figure 12: A piece of 70035 in its dry nitrogen display case. NASA S84-34617.
References for 70035

LSPET (1973) Apollo 17 lunar samples: Chemical and petrographic description. Science 182, 659-672.

