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EXECUTIVE SUMMARY

 At their present state of development, Human Exploration and Development of Space (HEDS) 
mission architectures, radiation transport theory, and radiobiological research indicate the need to add 
massive shielding to manned deep space vehicles and surface habitats if the radiation dose limits 
are similar to those in use for low-Earth orbit missions. If conventional spacecraft materials launched 
from Earth provide this extra shielding, it will substantially increase the mission costs. In this workshop, 
revolutionary ideas for shielding that would mitigate these costs were examined.

 None of the revolutionary new ideas examined for the first time in this workshop showed clear 
promise. The workshop participants felt that some previously examined concepts were definitely useful 
and should be pursued. The workshop participants also concluded that several of the new concepts 
warranted further investigation to clarify their value.

 Participants at the workshop recommended the use of in situ materials for shielding surface habi-
tats and encouraged further investigation of this approach. The use of surface terrain for added shelter 
should be pursued with detailed investigations.

 Some unconventional spacecraft materials deserve further study. Polyethylene is definitely use-
ful as shielding. Research should be pursued to find ways to fabricate functional spacecraft parts using 
polyethylene. Borated polyethylene should be reevaluated for its shielding effectiveness using improved 
radiation transport codes.

 Two other categories of materials warrant continued research. Continuing research on carbon 
nano-materials should be monitored for improved hydrogen storage capability. The radiation shielding 
effectiveness of palladium-based alloys for hydrogen storage should be evaluated using existing radia-
tion transport codes.

 Several mission architectures that carry large volumes of liquid hydrogen as fuel were noted.  
It was felt that it would be prudent to consider using liquid hydrogen as shielding for the crew because 
of its extraordinary shielding effectiveness. It is recommended that some simple rules of thumb for 
radiation shielding effectiveness of various materials be developed as guidance for mission designers.

 The potential use of extraterrestrial materials and space debris for shielding was investigated. 
While adequate material in all categories can be located in space, it was felt that all these concepts 
were impractical. The only one that might deserve further consideration is the use of space debris 
from geostationary orbit, but only if its collection and removal is necessary for other reasons.

 While none of the electromagnetic concepts showed clear promise, the concept that uses cold 
plasma to expand a magnetic field was recommended for further assessment.
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 Biomedical solutions, such as radioprotectants or the implications for dose limits for micro- 
dosimetric theory, or mission architectural solutions, such as shortened interplanetary travel times  
or a reusable shield to be stored in geostationary orbit between missions, were not considered.

 In this Technical Memorandum, we have tried to assess each of the revolutionary concepts 
and provide some clear guidance for future investments for research on radiation shields. We believe 
that some of the materials examined show promise of lighter shields that could be made from conven-
tional spacecraft materials. These concepts should be vigorously investigated. One of the concepts 
for electromagnetic shielding could not be evaluated in the time available. It should be properly assessed 
and pursued if it shows promise.
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MISCELLANEOUS 

eV kinetic energy achieved when a particle carrying the electrical charge 
of one electron is accelerated by a potential difference of 1 volt

geostationary altitude altitude of the circular equatorial orbit with a period of one sidereal 
day; the radius of this orbit is approximately 6.63 Earth radii

newton unit of mechanical force in the rationalized MKS system 

rem roentgen equivalent man, an obsolete unit of dose equivalent—has 
been replaced by the Sievert (1 Sievert = 100 rem)

Stormer’s equation describes the radiation shielding effectiveness of a dipole magnetic 
field

Stormer theory mathematical approach developed by Carl Stormer in 1930s to 
calculate the motion of a charged particle in a dipole magnetic field

tesla field standard unit of magnetic field (104 G)

Van der Graaff machines electrostatic particle accelerators that accelerate particles 
 with a large voltage potential

Wheeler’s Approximation an approximate formula for the magnetic induction of a circular wire 
loop; the vector cross-product of the magnetic field strength, B, and a 
small increment of path length dl is integrated along the path a charged 
particle takes in the magnetic field

∆V initial velocity a spacecraft must achieve to reach another specific 
destination in space



1

TECHNICAL MEMORANDUM

REVOLUTIONARY CONCEPTS OF RADIATION SHIELDING FOR HUMAN 
EXPLORATION OF SPACE

1.  INTRODUCTION

At the request of NASA Headquarters, code UG, a workshop was held at Marshall Space Flight 
Center (MSFC) to assess a list of “Revolutionary Physical Sciences Radiation Protection Strategies,”  
(app. A) that had been assembled by Headquarters’ Advanced Radiation Protection Working Group,  
and other concepts found in the literature. For planetary missions, the necessity of adequately shielding 
flight crews from the effects of galactic cosmic rays (GCRs) and solar energetic particles (SEPs) has 
been stressed in publications, workshops, and national committee reports. The principal problem is the 
interplanetary GCR flux which could produce radiation doses above current allowable limits within the 
shielding provided by present-day manned spacecraft; e.g., International Space Station (ISS) and the 
Space Transportation System (STS).

The last recommended limit from the National Council on Radiation Protection (NCRP) issued  
in 1989—0.5 Sv/yr (or 50 rem/yr) to the blood-forming organs of flight crews—considered only the 
low-Earth orbit environment (dominated by trapped protons and electrons). The dose limit for the ISS  
has been administratively set at 0.2 Sv/yr (or 20 rem/yr). No limits have yet been set for planetary  
missions.

For human exploration and development of space (HEDS), the implication of current limits  
and the currently available radiation shielding calculations is that considerable mass for radiation shield-
ing will probably have to be added to the transit vehicles and surface habitats beyond that which is 
required simply to perform the mission. Current research could affect both the limits and the shielding 
calculations. The carcinogenic effects of the high energy and heavy element (HZE) content of the  
cosmic-ray flux and its nuclear interaction products are being investigated in the NASA Life Sciences 
program. The methods used to calculate the secondary interaction products behind shielding are also 
being improved. Radiobiology research could affect the limits set for planetary missions, and the shield-
ing calculation improvements might change the predicted biological risk for a particular shielding  
situation.

1.1  Interplanetary Radiation Environment

For space flights beyond the Earth’s magnetosphere, both crews and spacecraft equipment face  
a significant hazard from the natural ionizing radiation environment (Space Studies Board, 1996;  
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Wilson, 1995, 1997). The most significant constituents of this environment are energetic protons  
and heavy ions during SEP events (Shea, 1990; Sauer, 1990) with energies up to a few 100 MeV,  
and GCRs (Badhwar, 1996; Wiebel, 1994; Nymmik, 1992), which consist of protons and heavy ions 
with energies in the billion electron volt range.

The elemental composition of GCRs is ≈85 percent protons, 14 percent alpha particles, and  
1 percent heavier nuclei when compared at the same energy per nucleon (Wiebel, 1994). The effects  
of heavy nuclei far outweigh their number because their energy deposition is proportional to their 
nuclear charge squared and their biological effect enhances their importance even more. Figure 1 shows 
the energy spectra of selected GCR nuclei both for solar maximum and solar minimum (Badhwar, 1996). 
The low energy part (below ≈1 GeV) of the GCR spectrum is modulated as solar activity increases  
and decreases over the solar cycle. This changes the total flux by about a factor of 3. There has been  
a continuing effort over many years to measure and model GCR fluxes. Current models (Badhwar,  
1996; Wiebel, 1994; Tylka, 1997) represent the historical database of measurements with accuracies  
of ≈15 percent.
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Figure 1.  “Worst case” model cosmic-ray spectra for solar minimum 
 and solar maximum (Badhwar, 1996).

SEP events primarily consist of protons but include alpha particles and heavy ions with a com-
position that varies from event to event (Shea, 1990; Sauer, 1990). Since SEP events are associated with 
active regions on the Sun, they are more frequent near solar maximum, and a single active region may 
produce a few SEP events over a period of weeks. While the average particle energy for SEP events is 
lower than for GCRs, the flux is much higher. Figure 2 (Shea, 1990; Sauer, 1990) compares the spectra  
of several of the largest events. Individual events last from a few hours to several days, with most of the 
fluence in the first day. This makes it possible for “storm shelters” to be considered for the protection  
of flight crews.
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Figure 2.  Spectra of larger solar particle events from 1956 to 1990 (Shea, 1990; Sauer, 1990).

The potential impact of present-day dose limits on HEDS mission architecture can be partially 
illustrated with results from published examples of shielding calculations. Figure 3 shows the calculated 
dose equivalent behind planar slabs of lunar regolith. It is assumed that the GCRs and the SEPs from all 
the events of 1989 combined are normally incident on the slab.
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 anatomical man model is shown beneath a variable-thickness slab of lunar 
 regolith for the GCR flux at solar minimum (Gadhwar, 1996) and for the 
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 lunar regolith has a density of ≈1.5 g/cm3. Thus 75 g/cm3÷1.5 g/cm3 = 50 cm.
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1.2  Radiation Shielding With Materials

The following two main points are illustrated here: (1) The annual dose equivalent from GCRs 
dominates the 1989 SEP dose beyond regolith shielding depths of ≈10 cm, and (2) these depth-dose 
curves flatten considerably as the shielding depth increases. The reason is that GCR protons and heavy 
nuclei break up through nuclear interactions and produce cascades of secondary particles rather than 
stopping by ionization as most SEPs do (fig. 4). Many of the shielding calculations available in the 
literature assume the cosmic rays are normally incident on a slab of material, which is a reasonable way 
to compare different materials. In nature, the cosmic-ray flux is isotropic, so three-dimensional calcula-
tions are required to predict the dose in spacecraft or surface habitats. Those calculations generally have 
steeper depth-dose curves (Simonsen, 1997).
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Figure 4.  Calculation of primary cosmic rays and produced secondaries 
 in lunar regolith (Armstrong, 1991).

Figure 4 illustrates the composition of the radiation within lunar regolith as a function of depth.  
It can be seen that the incident fluxes of GCR primary protons and heavy ions quickly generate large 
fluxes of neutrons, gamma rays, and other secondaries that diminish only slowly with depth. These  
penetrating secondaries are what cause the slow fall-off of the dose equivalent seen in figure 3.
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Figure 5 compares the radiation exposure rate for various materials as a function of their thick-
ness in mass per unit area. Figure 5 shows that the materials with the smallest mean atomic mass make 
the lightest shields. There are several reasons for this:  

(1)  Materials with low mean atomic masses simply put more nuclei in the path of the incident 
cosmic rays for the same shield thickness in mass per unit area, helping to break up the heavy nuclei. 

(2)  Lighter nuclei contain fewer neutrons (hydrogen (H) contains none at all), so fewer  
secondary neutrons are created. 

(3)  Because these nuclei have a smaller nuclear charge, they are less effective in creating  
secondary electrons and gamma rays by pair production and bremsstrahlung, respectively. 

(4)  Some light nuclei, such as carbon and oxygen, when struck by a cosmic ray, tend to disin-
tegrate into helium nuclei and produce no neutrons. The neutrons produce a component of the radiation 
dose that increases in importance with the atomic mass and depth of the shielding material.

Figure 5 illustrates how the dose equivalent 5 cm deep in human tissue—typical for the blood-
forming organs—is further reduced by shields made from various materials.

At the current state of mission architecture, shielding calculations, radiobiological research,  
and radiation dose limits, the addition of radiation shielding mass to transit and surface habitats seems  
to be indicated, unless revolutionary new approaches to radiation shielding can be found.
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2.  THE WORKSHOP

This Technical Memorandum (TM) evaluates numerous revolutionary concepts for HEDS radia-
tion shielding. To evaluate these concepts, a 1½-day workshop was held at MSFC. The shielding con-
cepts that were evaluated include those in appendix B and others found in the literature. The participants  
were selected to provide expertise on the scientific and technical aspects of these concepts.

The NASA Headquarters’ workshop objective was to examine the physical shielding concepts 
that have been suggested, but not to address approaches using propulsion—get there fast—or possible 
solutions from medical science.

The workshop focus was on concepts for shielding from the GCR flux, which is the signifi-
cant problem at shielding depths typical of present manned spacecraft (for the ISS, ≈20 g/cm2). HEDS 
mission scenarios generally assume “storm shelters” for SEPs and adequate warning from the Space 
Weather program to utilize them. Some of the active (electromagnetic) concepts examined here have 
previously been proposed as shielding for SEPs, which have much softer spectra than GCRs. In this TM, 
the ability of these concepts to protect against GCRs were evaluated. Any shield protecting the crew 
from GCRs will be even more effective against SEPs.

For discussions in this workshop, the participants were divided into three teams as indicated  
in the participant list (sec. 3.1). The rationale for this was the commonality of the topics to be discussed, 
including the physical sciences involved, and the commonality of the discriminators—figures of merit, 
dual uses, penalties, hazards, etc. Five items on the Headquarters’ Working Group list were not listed  
for the teams. There were two “materials on Mars” concepts that were covered by previous studies  
for the Mars material option. A universal consensus seems to exist on the third item, “Design Space-
craft According to Human Requirements.” The fourth and fifth items—“place the spacecraft in a cloud 
of neutral gas or dust” and “a large sail/shield”—which fell in two concept categories, were evaluated 
separately.

After a half-day general discussion of the radiation problem and the objectives of the workshop, 
the participants broke into their assigned teams. Most of the deliberations took place in three separate 
teams with two midcourse general discussion sessions. The teams were instructed to conclude their  
deliberations with the following products:

• A ranking of the concepts according to their utility for cosmic-ray shielding, the perceived feasibility  
of development, foreseen hazards, engineering difficulties, etc.

• Identification of the concepts that have no merit for cosmic-ray shielding, insurmountable physical  
or technical difficulties, or extreme hazards.

• Recommendations for the next phase of research for those concepts that show promise for practical 
implementation.
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• An assessment sheet and a description for each concept.

• A summary of team findings.

In their deliberations, each team consulted the published literature—copious for some topics, 
sparse for others. Consultants and experts, both present at the workshop and participating through tele-
conferences and e-mail, were utilized. For several topical areas, particularly in extraterrestrial and active 
(electromagnetic) categories, specific calculations and analyses of databases were performed. Most of 
these topics had been covered with discussions, literature search, calculations, and database analyses 
before the meeting. These analyses are briefly described in appendix C.
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3.  SHIELDING CONCEPTS LISTED BY CATEGORY

Section 3 covers the three shielding concepts:  (1) Active (electromagnetic) method, (2) extrater-
restrial, and (3) novel materials, as well as the common elements and proposed figures of merit/discrimi-
nators for each category. The team members corresponding to each category are listed in section 3.1. 
Assessment of each concept can be found in appendix C. The three categories are as follows:

(1)  Active (electromagnetic) shield concepts:
• Electric fields.
• Magnetic fields (attached coils).
• Magnetic fields (deployed large-diameter coils or shields bearing magnets).
• Plasma methods (expand magnetic field, produce electric field).

Common elements:
• Many previous studies of physics for most; some studies of engineering.
• Requires space power to develop fields; requires superconducting magnets.
• To shield against GCRs one must have either very high fields or very extended fields.

•  ∫ L BXdl
 

 
> 1,000 G km or V > 1010 V.

Proposed figures of merit/discriminators: 

• ∫ L BXdl
 

 
> 1,000 G km or V > 1010 V.

• Smallest stored energies in field.
• Minimized effects of fields on crew and equipment (<2,000 G).
• Perceived practicality.
• Hazards.

(2)  Extraterrestrial concepts:
• Comets.
• Asteroids.
• Earth-orbit debris.
• Martian terrain/regolith/water.
• Lunar material.

Common elements:
• Mass shielding ideas.
• Transportation.
• Attachment, drilling, processing, etc., are required.
• No study yet as relates to cosmic-ray shielding for comets, asteroids, debris.
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Proposed figures of merit/discriminators:
• Availability of suitable objects (numbers, mass available, orbits).
• Transportation scenarios, number of stops (∆V, etc.).
• Practical considerations (ease of attachment, drilling, etc.).
• Possible disruption of object, etc.
• Hazards.

(3)  Novel materials concepts:
• Quasi-crystal H absorbers.
• Palladium, alloys as H absorbers.
• Carbon nano-material absorbers.
• Solid H.
• Metal hydrides.
• Borated CH2 and other compounds.

Common elements:
• Mass shielding.
• Goal is lowest average atomic mass achievable (polyethylene, CH2 is current “standard”).
• Dual use would modify the lowest average atomic mass rule.
• Neutron absorption.
• Structural or other use.
• Volumetric considerations.

Proposed figures of merit/discriminators:
• Average atomic mass number.
• Mass fraction of H.
• Dual use as construction material, neutron absorber, fuel, etc.
• Perceived practicality (fabrication, mechanical properties).
• Hazards.

3.1  Participants/Teams

The following are team members for the various shielding concept categories:

(1)  Active (electromagnetic) shield concepts:

James H. Adams, Jr. NASA MSFC (moderator)
John W. Watts NASA MSFC
Thomas A. Parnell UAH/USRA
Robert Cassanova NIAC
Dennis Gallagher NASA MSFC
Robert Winglee University of Washington
Lawrence Townsend* University of Tennessee
Hadley Cocks* Duke University
Bruce Remington* Lawrence Livermore National Laboratory

*Not attending—inputs and reviews
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(2)  Extraterrestial concepts:

David Hathaway NASA MSFC (moderator)
Steve Knowles Raytheon
William Kinard NASA LaRC
Keith Noll Space Telescope Science Institute
Larry Kos NASA MSFC
Kent Joosten* NASA JSC

(3)  Novel materials concepts:

John Gregory UAH (moderator)
Richard Grugel NASA MSFC
Donald Gillies NASA MSFC
James Derrickson NASA MSFC
Michael Heben* National Renewable Energy Laboratory
Andy McClaine* Thermo Tech
Bruce Remington’s Group* Lawrence Livermore National Laboratory

(4)  Editorial team:

Nancy Bennett USRA
Dave Dooling Infinity Technology
Dannah McCauley UAH
Karen Murphy Morgan Research Corp.

*Not attending—inputs and reviews
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4.  SUMMARY OF CONCEPT ASSESSMENTS/RECOMMENDATIONS

Section 4 briefly summarizes the assessments of each concept considered. A rationale for each 
assessment is included in appendix C.

4.1  Active (Electromagnetic) Concepts

4.1.l  Mini-Magnetosphere Plasma Propulsion (M2P2)

• Plasma expansion of field demonstrated in small-scale chamber.
• Energy requirements seem modest.
• Scaling to ∫ L BXdl

 

 > 1,000 G-km has not been calculated.
• Concern about scaling, plasma instabilities, and plasma loss. 
• Dual use for propulsion.

Recommendation:  A feasibility study including a thorough assessment of the shielding  
effectiveness by cosmic-ray tracing calculations in the field.

4.1.2  Magnetic Field Produced by Deployed Coil

• Published reports indicate SEP shielding with moderate field strength and stored energy.
• The point dipole approximation implicit in the published SEP shielding calculations introduces large 

errors.
• While a single coil must have too much stored energy, it may be possible to find a workable multicoil 

configuration.
• Very large magnet coils required (>10 km) for GCR shielding.
• Possible mechanical-magnetic field instabilities during deployment and charging.

Recommendation:  A search for multicoil configurations that will produce a large weak field. 

4.1.3  Electrostatic Field

• A positive potential of several billion volts is required for GCR shielding.
• The required potential is too large and space is too conductive for natural “spacecraft charging”  

concepts.
• “Confined” electric fields appear to be the only feasible concept.
• Large electrostatic generators would be required for confined electrostatic fields for GCR.
• For GCR shielding, very large structures (of order 20 km) would be required to prevent electrical  

breakdown.

Recommendation:  Not recommended for study.
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4.1.4  Electric Field Produced by Plasma

• The concept must produce several billion volts for GCR shielding.
• Electron plasma (accumulated electrons stored in a magnetic field) contains several coulombs 
 of electrical charge (typical of lightning bolt).
• Plasma instabilities, electron precipitation, etc. are highly probable.
• The concept would require a huge vehicle.
• Large electron accelerators are required to compensate for leakage. 

Recommendation:  Not recommended for study.

4.1.5  Magnetic Field From Local (Spacecraft) Coils

• Very high magnetic fields are required and stored energies are equivalent to that from nuclear weapon 
detonations.

• Large structural mass is required to support coils, exceeding the weight of direct mass shielding.
• Explosion and large electromagnetic pulse will occur if coil is breached, or superconducting magnet 

quenches (goes normal).

Recommendation:  Not recommended for study.

4.1.6  Large Sail/Shield Concept

• Small magnets attached to a thin shield deployed upstream along the interplanetary magnetic field 
deflect solar energetic particles streaming along the field before they reach the spacecraft.

• Not effective against galactic cosmic rays.
• SEP events have a broad angular distribution about the local magnetic field direction when streaming 

and usually become isotropic early in the event, defeating this shield concept.

Recommendation:  Not recommended for further study.

4.2  Extraterrestrial Concepts

4.2.1  Use of Mars Surface/Subsurface Material on Arrival

• The radiation shielding using local materials for a Mars base has been covered in numerous prelimi-
nary studies; e.g., Workshop on Strategies (Wilson, 1997). 

Recommendation:  Continued studies—this is definitely useful.

4.2.2  Areas on Martian Surface With Natural Atmospheric and Terrain Shielding

• Since the cosmic-ray flux is isotropic to first-order terrain, shielding should scale as the fraction 
 of the celestial sphere that is visible from a surface location. This is modified by interactions 
 of cosmic radiation in the atmosphere and Martian surface through cascading/backscatter 
 of the secondary particles.
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Recommendation:  This should be pursued with detailed calculations of the atmospheric  
and surface radiation environment and precursor measurements as suggested in appendix B.

4.2.3  Orbiting Debris

• Adequate nonfunctional material exists in orbit; a number of “stops” would be required to collect 
them.

• Spent rockets and defunct spacecraft would require processing by methods that would not produce 
more small orbital debris.

• Processing would probably need to be performed by separate robotics spacecraft.
• Permission must be obtained from original owners.
• Composition is uneven (aluminum structures, solar arrays, electronics modules, etc.), therefore  

shielding value is not homogenous.
• Some components may be hazardous (residual propellant, NiCd batteries, pyrotechnics).

Recommendation:  If a compelling case can be made for the need to remove these objects  
from space, consider investigating this method.

4.2.4  Use Lunar Regolith or Water-Ice

• Transit ∆V penalties.
• Requires processing of lunar material to produce useable shielding.
• Robotic scenarios seem to be required.

Recommendation:  Not recommended for study except for lunar base habitat shielding.

4.2.5  Rendezvous With Asteroids and Burrow In

• Analyses of known asteroids show that appropriate candidates must be very rare. Furthermore,  
two are required (transit to and from Mars) for each method.

• Large ∆V penalties for the current best candidate. This significantly extends the mission.
• Tunneling/mining/manufacturing operations required.

Recommendation:  Not recommended for study.

4.2.6  Rendezvous With a Comet and Burrow In

• Suitable comet trajectories are very rare; at present, no viable candidates exist.
• Very large ∆V penalties that prolong the mission.
• Tunneling/mining/manufacturing operations are required.
• Surrounding debris and volatile materials in core produce hazards.

Recommendation:  Not recommended for study.
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4.2.7  Place Spacecraft Within a Cloud of Neutral Gas or Dust, Bound to the Spacecraft  
 Electrostatically or Magnetically

• Effectively shielding against GCRs requires a thickness equivalent to tens of centimeters of condensed 
material.

• The cloud would have very large dimensions compared to the transit vehicle. Thus, its mass would 
greatly exceed that required to locally shield the crew compartments.

• If the “neutral” cloud could be bound electromagnetically (by polarization or paramagnetic proper-
ties), it would be difficult to keep in place because of course correction burns. It might also be eroded 
by the solar wind.

Recommendation:  Not recommended for study.

4.3  Novel Materials Concepts

4.3.1  Carbon Nano-Materials

• Confirmed storage of H up to 6 percent mass fraction1 and reports of up to 20 percent.
• Large and active research base for H storage and materials applications.
• Dual use as shielding and structure/H storage a possibility.

Recommendation:  Recommend continued research in this area and liaison with Department  
of Energy (DOE) studies.

4.3.2  Metal Hydrides

• Various metal hydrides contain 7–18 percent H.
• LiH has been fabricated for space reactor shielding.
• LiH is competitive with CH2 in shielding cosmic rays.
• LiBH4 contains largest mass fraction of H (18 percent).
• Reactive to various degrees with air and water.
• DOE is studying hydrides for H storage.

Recommendation:  Recommend studies of fabrication, encapsulation for hazard abatement,  
and liaison with DOE studies on these materials. Recommend assessment of relative shielding  
effectiveness using a code such as HZETRN.

4.3.3  Palladium Alloys for Hydrogen Storage

• Higher volumetric density for H.
• Mass fraction of H; ≈ 4 percent reported.
• High average atomic mass; concern about neutron production.
• May have dual-use applications, particularly where volumetric considerations are important.

 Recommendation:  Continue present studies and evaluate shielding effectiveness. Recommend 
assessment of relative shielding effectiveness using a code such as HZETRN.

1For reference, polyethylene is 14 percent hydrogen by weight. 



15

4.3.4  Polyethylene

• Polyethylene is best “standard or nonnovel” material, except for H, since it contains 14 percent mass 
fraction of H and carbon preferentially fragments into 3xHe rather than neutrons.

• In calculations using HZETRN, borated polyethylene is a slightly worse shield than pure polyethylene 
because B releases neutrons in interactions as well as absorbing them. 

Recommendation: Investigation of possibility of laminates, etc., with pure polyethylene. 
Reevaluate borated polyethylene with future improved shielding codes for thicker shields.

4.3.5  Quasi-Crystals

• Absorbed H: 1 to 2.5 percent mass fraction.
• High atomic mass absorbers.

Recommendation:  Not competitive with other materials considered here as radiation shield;  
not recommended for further study.

4.3.6  Solid Hydrogen

• Has been studied for propulsion (slush H).
• Not a rigid material, and density slightly less than liquid.
• Costly.

Recommendation:  No apparent advantages over liquid H2 for shielding; not recommended  
for study.

4.4  Design Spacecraft According to Human Requirements

The integration of radiation shielding considerations into the preliminary architecture design  
and systems engineering for interplanetary spacecraft has previously been advocated by many investiga-
tors associated with the HEDS radiation shielding issue (Wilson, 1999, 2000; Parnell, 1998). If this can 
be accomplished with an efficient process, it is more likely that deep space manned missions can meet 
crew radiation limits without adding excessive mass for radiation shielding or resorting to exotic strate-
gies with their complications. Since accurate shielding calculations require accurate mass models, they 
are labor intensive to perform. This is because no satisfactory means exists to import three-dimensional 
computer-aided designs (CADs) into the radiation transport codes. Some recommendations that came 
from the workshop were as follows:

(1)  Consider adopting three-dimensional CAD software that complies with ISO 10303,  
“Standard for the Exchange of Product Model Data,” for the design of manned spacecraft. 

(2)  Develop design rules requiring the use of “tags” to define the material content  
of each volume in the design. 



16

(3)  Form a committee to work out a plan for implementing these recommendations. Basic  
information about radiation shielding properties of materials, and geometrical considerations in “rules  
of thumb” form should be developed as guidance for all mission designers.
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APPENDIX A—PRELIMINARY REPORT OF THE ADVANCED RADIATION 
PROTECTION WORKING GROUP
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Preliminary Report of the
Advanced Radiation Protection Working Group

  Julie Swain M.D., HQ   Frank Cucinotta Ph.D., JSC
  Guy Fogleman Ph.D., HQ  David Tomko Ph.D., HQ
  Eugene Trinh, Jr. Ph.D., HQ  Michael Wargo Sc.D., HQ

Assumptions:  The current evolutionary projects in radiation protection will be continued in:
a.  Defining the radiation environment (destination-specific)
b.  Biological dose tolerance limits of each type of radiation for 
 each side effect in each type of tissue; dev. of animal models
c.  Operational studies to minimize radiation exposure
d.  Define shielding required with known materials

(This radiation research plan has been validated by the NRC and outside experts.)

Revolutionary Physical Sciences Radiation Protection Strategies

1. Magnetic Fields
• Any dipole field in space will develop a radiation belt like that of Earth by capturing charged particles 

that move along field lines
 –  The rings of Saturn act as a radiation shield, reducing captured charged particles
• Solution:  Develop a tethered magnet/spacecraft system with a thin, shielding disk (or disk sector)  

in the equatorial plane of the magnetic field to de-energize the moving particles
 –   Possibly dual-use in that the solar wind pushing against the field will lead to propulsion
 –   Plasma injection can expand the volume of the field
 –   Problem:  Huge energy storage and potential uncontrolled release

2. Electrostatic Fields
• In space, a small electrostatic potential imposed on a grid will naturally build a high voltage field that 

will act to deflect low energy charged particles 
• Problem:  The photoelectric effect produces a cloud of cold electrons around a spacecraft



19

 –   This would neutralize the net positive charge of the grid
 –   A second, outer, negative potential grid could possibly mitigate this problem

3. Use Extraterrestrial Materials for Shielding
• Collect and assemble “space junk” from geosynchronous orbit to serve as a shield
• For Mars transit, mine water ice or regolith on the moon and use it to shield the spacecraft enroute
• For Mars exploration, mine/drill to the “aquifer” for ice (water) for habitat protection, ISRU, and life 

support 
• Precursor radiation measurements on Mars surface can be used to locate areas with natural atmo-

spheric and terrain shielding leading to 25% exposure reduction
• Place the spacecraft within a huge cloud of neutral gas or debris (i.e. floating dust) that is electrostati-

cally or magnetically controlled
• Far Out Concept™:  Capture a ride on and burrow into a short-period comet (from the Kuiper belt,  

3.3-10 year period)

Revolutionary Radiation Shielding Materials

4. Projected Advanced Materials (Very low TRL, at Fundamental Research Stage)
• Hydrogen loaded Single Walled Nanotubes and Fullerenes
 –    Dual use — radiation protection and structural modifier in aluminum alloy composites
 –    Department of Energy is interested for hydrogen storage
• Borated Polyethylene
–    Boron acts as a neutron absorber, improving the shielding performance of conventional polyethylene
• Hydrogen loaded Palladium-Silver (Pd-Ag) alloys
 –    Dual use — radiation shielding and hydrogen storage
• Hydrogen loaded Metal hydrides
 –    Dual use — radiation shielding and hydrogen storage

5. Design Spacecraft According to Human Requirements!!
• Previous spacecraft design has been based on engineering requirements and humans have adapted  

to fit the vehicle
• Design requirements and materials could be tailored to human compatibility and protection

Revolutionary Biomedical Radiation Protection

6. Biomedical Research
• Astronaut Genetic Screening
 Some humans are relatively radioresistant, others are more sensitive to radiation damage
 –    Solution:  Determine the genetic markers for radioresistance, then screen in those with this genetic 

profile while screening out those with sensitivity
 –    Problem:  Ethically unacceptable at this time
• Gene Therapy
 –    The genetic sequences responsible for the incredible radioresistance of certain microorganisms are 

being determined
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 –    Solution:  Administer genetic therapy to astronauts in order to synthesize and secrete the proteins 
responsible for radioresistance

 –    Problem:  Gene therapy is, as yet, unsuccessful.  This is ethically unacceptable at this time
• Pharmacologic Therapy
 –    Solution:  Use tissue-specific inhibitors of radiation damage to prevent radiation damage or use 

pharmacologic agents to induce rapid, accurate DNA repair.  Administer selective apoptosis inhibitors 
and promotors, depending on reversibility of radiation damage.

 –    Problem:  No such drugs are known at this time
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APPENDIX B—REPORT OF THE ACTIVE (ELECTROMAGNETIC) CONCEPTS PANEL
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Report of the Active (Electromagnetic) Concepts Panel

Active Radiation Shields

Concepts for active shields fall into four categories: electrostatic shields, plasma shields, con-
fined magnetic shields and un-confined magnetic shields. Shields in these four categories are briefly 
described below. In addition to these brief descriptions, some concepts are discussed separately. These 
include the M2P2 concept and the large coil concept. As an aid to understanding the evaluations of the 
magnetic models, a note on magnetic models is attached at the end of this section. The ability of many  
of these active approaches to shield against galactic cosmic rays has been reviewed previously. The 
results of those reviews have been quoted here in the summary below and in two separate sections,  
one entitled “Pure Electrostatic Shielding” and the other entitled “Plasma Radiation Shield.”

Electrostatic Shields
The idea is to use an electric field strong enough to repel the cosmic rays. Such a field must be  

of the order 1010 volts. This class of shields has been reviewed by Townsend (1983, 2000), Morozov  
et al. (1971), and Sussingham et al. (2000). All these authors dismiss this approach because of the large 
field required and the creation of intense secondary radiation within the shield due to various mecha-
nisms. This is discussed in more detail in the section entitled “Pure Electrostatic Shielding” which  
follows.

Plasma Shields
There are several ideas to use plasma to create an electrostatic shield. Townsend (1983, 2000)  

and Sussingham et al. (2000) have examined these ideas and concluded that they should be ruled out  
both on account of the extremely high electrical potential required and because of the huge energies 
stored in magnetic fields in some concepts. One of these ideas, which used magnetically confined 
plasma to create an electrode, is discussed in detail in the section entitled “Plasma Radiation Shield” 
which follows.

Confined Magnetic Fields
The concept is to use magnetic fields to deflect the cosmic rays from the crew quarters of the 

vehicle. To avoid exposing the crew to an intense field, it is confined in a double-walled torus. This sur-
rounds the crew with a “wall” of magnetic field that deflects the radiation. This approach was reviewed 
by Townsend (1983, 2000) and Sussingham et al. (2000) who found that the mass required for such  
a magnet greatly exceeded the mass of material shielding to achieve the same degree of protection.

Unconfined Magnetic Fields
The concept here is also to deflect the cosmic rays with the magnetic field, but in this case the 

field is allowed to become very large. Early concepts were based on placing coils in the vehicle because 
liquid helium would be required to cool the superconductors considered. These designs were more  
massive than the material shielding needed to provide the same protection. In addition they posed two  
hazards: (1) the magnetic field in the crew quarters was unacceptably high and (2) the stored energy  
in the coil was so large that an unplanned quench of the superconductor would have been catastrophic. 
Still, Townsend (2000) did not rule out  unconfined fields noting that the Earth’s field provides protec-
tion safely at field strengths of ≤ 0.5 gauss. The Workshop reviewed three concepts for un-confined 



23

field shields. One of these concepts uses a very large coil of high Tc superconductor deployed beyond 
the vehicle. Sussingham et al. (2000) reviewed the concept favorably. The second relies on inflating 
the field with plasma to obtain a large field structure. The last proposes to deploy a large sail/shield far 
upstream along the local interplanetary magnetic field to deflect solar energetic particles. These are dis-
cussed in more detail in the following pages.

Magnetic Shielding Using a Large Coil

The Concept
It has been suggested by Cocks (1991) and Cocks et al. (1997) that magnetic shielding could be 

obtained by deploying a large circular loop of high-temperature superconducting wire far beyond the 
manned vehicle. The idea is to make use of the large size to reduce the stored energy in the coil needed  
to provide the magnetic shield. Zubrin and Martin (2000) have also investigated such a loop to be used  
as a large magnetic sail. Their report includes many details concerning the deployment of such a wire 
loop.

The Shielding Effectiveness
The idea was suggested as a shield against solar energetic particles. Cocks (1991) and Cocks  

et al. (1997) use Stormer theory to estimate the magnetic moment needed to provide the required shield-
ing. Stormer’s equation uses the point dipole approximation for the magnetic field. It’s use for the large 
dipole proposed by these authors appears to be incorrect. We have recalculated the magnetic shielding 
effectiveness of their proposed coil using the Law of Biot and Savant to obtain the field near the coil.  
The resulting field can be described using a spherical harmonic expansion (Jackson, 1962).

To obtain a measure of the shielding effectiveness of the coil, we used the method for “other 
fields” in the “Notes on Magnet Models” below where the reference value of 960 Kilogauss.meters  
was obtained for the line integral in the magnetic equatorial plane.

We used the spherical harmonic field model discussed above to carry out a line integral in the 
dipole’s equatorial plane from infinity to 5 meters from the wire. The current in the wire was adjusted  
to obtain a value of 960 Kilogauss.meters for this integral. To obtain this integral value required a cur-
rent of 1.05X108 Amperes. Using Wheeler’s approximation for the inductance of a single wire loop,

 L = Rµ0[ln(8R/a)-1.75) = 0.224 Henrys. (1)

where M0 = 4πX10-7, the coil radius, R = 10 km and the wire diameter, a, is 0.25 mm.

We calculate the stored energy in the loop to be,

 E = 0.5Li2 = 1X1015 Joules; or 240 Kilo-tons of TNT (2) 
(more than 10 times the Hiroshima bomb)

This is quite different from the result obtained by Stormer theory.
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Deployment
The concept for deploying the wire is to unfurl it and use current flowing in the wire to cause  

it to circularize.

The stored energy, E, in the wire depends on its inductance, L, and the current, i, flowing in it 
according to the equation (2), where the inductance is given by (1). Using these equations it is easily 
shown that a single large circular loop has less stored energy than any other configuration that the wire 
might assume. It can therefore be expected that the loop, once energized, will form the desired circle.

The problem is that the loop will be too warm to be superconducting until it is properly 
deployed. This makes it necessary to consider a wire that is composed of a low resistance room tempera-
ture conductor with superconducting strands imbedded in it. The room temperature conductor might be 
silver, copper or aluminum. The idea is to pass a small current though the deployed loop to cause it to 
circularize. Zubrin and Martin (2000) have considered this problem. Considering only the acceleration 
obtained from the current, they estimate that it would take 23 days for the coil to become circular. This  
is likely to be an underestimate because once the coil reaches its full size, it is likely to oscillate about 
the final circular configuration for some time.

Cooling the Wire
The high temperature superconductor which looks most promising for this application is barium 

strontium copper calcium oxide (BSCCO). The superconducting transition temperature for this alloy is 
90°K, but to carry the required current it must be operated at 60°K. The plan is to insulate the sunward 
side of the coil and cool it by radiating heat to deep space from the shadowed side. This is technically 
feasible using well-understood techniques of multi-layer insulation and radiative cooling. The problem  
is to orient the coil so that the insulated side is facing the sun everywhere around the coil. Any torsion  
in the wire could cause some portion of it to stabilize with the insulated side pointing incorrectly.

Perhaps the authors might overcome this difficulty by deploying a pair of coils with separators 
located between them periodically. The minimum energy configuration for the pair of coils will be one 
in which their radii are equal. This will force the two wires to take the same orientation everywhere 
around the loop, making it possible to orient the insulation toward the sun everywhere. Nevertheless, 
because the coil will probably oscillate both radially and torsionally it may be a long time before the 
wires will cool to 60°K around their entire circumference.

The assessment of the Workshop is that this idea is impractical. Nevertheless, if magnetic shield-
ing can be made to work, it must be through the use of a very large weak field. It may be possible to find 
a multicoil configuration that will produce the required large weak field.

Mini-Magnetospheric Plasma Propulsion as a Means for Cosmic Ray Shielding

Obiectives
Mini-Magnetospheric Plasma Propulsion (M2P2) seeks the creation of a magnetic wall or bubble 

(i.e. a mini-magnetosphere) attached to a spacecraft that will deflect charged particles that make up the 
solar wind and cosmic rays. The mini-magnetosphere uses the injection of low energy plasma to inflate 
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the magnetic field over substantially larger distances than a simple dipole field pattern would give. Thus, 
M2P2 has the advantage that it eliminates the need for previously proposed very intense magnets and the 
concomitant high energy storage requirements needed for local magnetic shielding, as well as eliminat-
ing the need for the deployment of large scale (>1 km) current loops in space proposed for magsail-type 
shielding (Zubrin, 1993). Small units which would consist of magnets with strengths of a few kilogauss, 
and plasma source weighing a few tens of kg with a power consumption of about 1 kW and a mass con-
sumption of about 0.25 to 1 kg/day. A set of four such units could potentially provide about 100 kGauss 
meters of shielding which would effectively stop SEP particles. M2P2 has another advantageous feature 
because it has economies of scale in that convection losses from the mini-magnetosphere decrease with 
increasing size as surface to volume ratio falls. As a result, a 1000 kGauss meter shield (i.e. deflecting  
GCR particles) is potentially possible with existing technology without the need for a large mass or 
power requirement. The shielding could be used for long duration spacecraft missions, such as return 
trips to Mars or Jupiter, and provide not only shielding for the spacecraft but extremely efficient propul-
sion for the spacecraft. In addition, it could provide a large-scale (tens of square km) radiation shield  
on solar system bodies where there is little or no atmosphere (i.e., moons of planets and asteroids). Such 
large scale shielding would allow long duration human exploration without the need for the astronaut to 
carry bulky personalized shielding.

Current Research on the M2P2
Research for the modeling and the development of the M2P2 is supported by a Phase Il grant 

from NASA’s Institute for Advanced Concepts (NIAC). Large scale testing of the M2P2 prototype is 
being done in a collaboration between the University of Washington and NASA Marshall Space Flight 
Center.

Dynamics of the M2P2
M2P2 seeks to create the mini-magnetosphere in much the same way as nature generates coro- 

nal mass ejections and the enlarged Jovian magnetosphere (Winglee et al., 2000a,b). In the latter two  
cases, plasma is created on closed magnetic field surfaces. When the plasma reaches sufficient pressure  
to overcome the magnetic field tension, the magnetic field expands to scale sizes very much larger than 
the original object. The laboratory prototype of the M2P2 uses a plasma source embedded asymmetri-
cally in a dipole-like magnetic field. Breakdown of the plasma can be produced at neutral pressures  
of between about 0.25 to 1 mTorr to produce plasma densities of the order of 10^11 - 10^12 cm-3 with 
a temperature of a few eV. The plasma pressure is sufficient to overcome a magnetic field of several 
hundred to a thousand gauss and cause the field’s outward expansion or inflation into the mini-magne-
tosphere. The motion of both open and closed field lines within the vacuum chamber is demonstrated 
through the optical emissions from the helicon plasma. 

A joint collaboration between the University of Washington and NASA MSFC has demonstrated 
inflation of the magnetosphere to at least several feet away from the magnet. The experiment shows 
plasma flows all the way to the chamber walls at a distance of 16 feet but the determination of closed/
open field structures at these distances is very difficult. In space, inflation to about 15-20 km would be 
expected for the same configuration, and would produce a force of about 1-3 newtons for the expendi-
ture of about 1 kW of power, and about 0.25 to 1 kg/day of gas.
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Computer simulations of the expected magnetic field for a single unit and a multiple (four unit) 
 system have been undertaken. These results indicate that the main source of loss from the mini-
magnetosphere is through convection of plasma and magnetic field around the flanks of the magneto-
sphere. Because the surface-to-volume ratio is smaller for the multiple unit system, losses are reduced  
and the resulting mini-magnetosphere is actually more than four times larger than the one obtained  
with a single unit. Thus, the M2P2 system has the favorable feature that scaling to a larger system  
is more efficient, and more easily deployed.

The present simulations indicate that the 4-unit system could potentially produce a magnetic field 
structure such that, in almost all directions, the integrated field strength a cosmic ray would encounter 
would be approximately 100 gauss km. Further research is needed to verify the scaling. Finally, single 
particle trajectories need to be traced through the field to fully prove the M2P2’s shielding capabilities.

The computer simulations of the mini-magnetosphere also show the interesting feature that  
the formation of the tail current sheet is suppressed by the injection of plasma on the front side 
that drives the inflation of the mini-magnetosphere. This feature, plus the scale size of the mini-
magnetosphere, have the property that the formation of ring currents and radiation belts (as occur  
in the terrestrial magnetosphere) may be suppressed for ions. Further research is needed to determine  
the orbits of trapped electrons.

Pure Electrostatic Shielding

There are two forms of pure electrostatic shielding, and neither is sound. In one scheme, the 
space vehicle is pictured as being constructed of two concentric shells, and these shells act as a charged 
capacitor. In this arrangement the space vehicle as a whole is electrically neutral. To be effective against 
galactic cosmic rays, the potential between the shells would have to be about 1010 V. The largest steady 
voltages produced on Earth between conductors are found in Van der Graaff machines. Despite the mas-
siveness of these machines, they cannot attain voltages higher than 20 MV.

Experience with space-borne electrostatic analyzers indicates that electric fields stronger than 
2X106 V/m between conductors are likely to breakdown. If a is the radius of the inner shell and b  
is the radius of the outer shell, then the stored charge on the shells is

 Q = 4πε0V[ab/(b-a)],

and the electric field is,

 E = Q/(4πε0r2)

Where V is the voltage, r is a radial distance between a and b and ε0 is the permittivity of free  
space (= 8.85X10-12 F/m). Taking a = 10,000 meters and solving for the outer shield radius, we get  
b = 20,000 meters and Q = 22,000 Coulombs. The stored energy in the shield would be E = 0.5QV  
= 1.1X1014 Joules (equivalent to 26 kilotons of TNT). The force between the shells is F = 0.5QV/(b-a)  
= 1.1X1010 Newtons (or 1 million metric tons of force).
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This is obviously unrealistic.

In the other arrangement, the space vehicle is considered as a charged conductor at 1010 V  
relative to “infinity.”

The difficulty with the second scheme is, perhaps, slightly less obvious. It might be thought  
in the first instance that the very high vacuum prevailing in deep space would itself be a very good insu-
lator. This is not the case, however, since the solar wind fills the planetary system with free protons,  
and electrons to a density of about 10/cc. These charges are free to respond to any potential of either 
sign. If one tried to maintain the space vehicle positive as a protection against energetic protons, free 
electrons in space would discharge the potential in a time so short that the scheme becomes quite  
unrealistic.

Plasma Radiation Shield

This section reviews concepts by Richard H. Levy and others reported in: “STUDY OF 
PLASMA RADIATION SHIELDING FINAL REPORT” prepared by AVCO-Everett Research Labo-
ratory, a division of AVCO Corporation, Everett, Massachusetts, Contract NAS 8-20310, May 1968, 
for the National Aeronautics and Space Administration, George C. Marshall Space Flight Center. The 
following description was abstracted from that report. Note that this concept was to shield against solar 
particle events. The potentials, energies, and charges in the concept must be scaled up by more than two 
orders of magnitude to be effective against galactic cosmic rays.

Definition
The Plasma Radiation Shield is an active device using free electrons, electric and magnetic 

fields for the purpose of shielding astronauts from energetic solar flare-produced protons. The specific 
purposes of the two fields are as follows: the electric field is the direct means of providing the shielding 
against energetic protons, while the magnetic field has the sole purpose of supporting the electric field 
by trapping electrons at a separation from the spacecraft. It follows that the electric field that is required 
for the Plasma Radiation Shield is just the same, as that required for the pure electrostatic shield. We 
therefore require the establishment of a voltage on the order of 30-100 MV.

Electrostatics
Consider a conducting sphere of radius a carrying a positive charge Q on its surface; the electric 

field produced by this arrangement (in the absence of other charges) is radically outwards from the sur-
face of the sphere. The magnitude of this radial electric field at radius r(>ρ) is given by

 E = Q/4πε0r2 (1)

This field can be derived from a potential, Φ. In defining the potential an arbitrary constant may 
always be added; in this case we have assumed that Φ = 0 at a large distance from the sphere. It follows 
that the sphere is at a potential

 Φ(ρ) = Q/4πε0ρ (2)

above the potential of distant space.
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A way of interpreting this statement in terms relevant to the Plasma Radiation Shield is as fol- 
lows: the work necessary to bring a proton (of charge + e) from infinity to the surface of our sphere  
is just eΦ(ρ) = eQ/4πε0ρ. In space the only source of this energy is the kinetic energy of the proton  
when at infinity; only if this exceeds the quantity eΦ(ρ) will the proton be able to reach the surface  
of the sphere. Measuring this kinetic energy in electron volts we find (since the charges on an electron 
and a proton are of equal magnitude) that the sphere is electrostatically shielded against protons having 
less than Φ(ρ) electron volts. If we wish to exclude protons up to 50MeV, Φ(ρ) must have the value  
5 x 107 volts. For a capacitor of capacitance C, the charge and the voltage are related by the formula

 Q=CΦ

Comparing this with the formula (2) we see that the capacitance of the isolated sphere is

 C = 4πε0ρ

Thus, a two-meter radius isolated sphere has the capacitance 222 x 10-12 farads. It follows that  
if we wish Φ(ρ) to be 5 x 107 volts, the charge Q must be 11.1 x 10-3 coulombs.

The arrangement described is not, as it stands, satisfactory. This is because a positive charge of the mag-
nitude being considered would attract electrons from the surrounding space plasma at a rate so large  
as to make the whole concept useless. In the Plasma Radiation Shield, a cloud of free electrons sur-
rounds the vehicle, the cloud being held in place by a magnetic field. Now the voltage across the elec-
tron cloud is always fixed by shielding considerations, but the details of the way in which the electron 
cloud is distributed are quite difficult to calculate. However, any given distribution can be characterized 
by a capacitance C.

Magnetic Field
To confine the electron cloud around the vehicle with a magnetic field, the field lines must sur-

round the vehicle without ever leading to it. This configuration can be realized if the vehicle is in the 
shape of a torus (or doughnut) and an electric current is made to circulate around the torus. The magnetic 
field lines will then surround the torus forming a dipole field configuration. This field confines the elec-
tron cloud. The force exerted on an electron of charge -e moving with velocity v in a magnetic field B  
is -e(v x B) . This force is perpendicular to both B and v. This force binds each electron to a field line. 
The electrons gyrate around these field lines, spiraling along the lines as they circulate around the  
vehicle.

A second observation of considerable importance also follows directly from the form of the 
expression (v x B) for the force exerted on an electron by a magnetic field. The electron cloud must be 
permanently in motion to remain confined by the field. The effect of the electric field is to cause the 
electrons to drift around the torus with a velocity given by (E x B)/B2 (Rietz and Milford, 1962). It does 
not cause electrons to precipitate onto the vehicle.
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Containment of the Electron Cloud
The authors of this concept expressed concern that the electron cloud would not remain stable  

for long periods of time. The authors speculate about several effects that could cause radial diffusion  
of the electrons or instabilities in the electron plasma.

Summary
This concept even for protection against solar energetic particles is flawed. The solar energetic 

particle flux contains electrons as well as protons. The electron flux can be 10% of the proton flux at  
the same energy. The shield energizes these electrons making them more of a hazard. This will at least 
partially offset the value of the shield.

To be useful any shield concept must also shield against galactic cosmic rays. This concept must 
be scaled up from value 5 x 107 volts to value 1 x 1010 volts to be effective against galactic cosmic 
rays. It must also be in place continuously. This greatly increases the concerns about radial diffusion or 
plasma instabilities causing the shield to be lost.

From the preceding discussion of the purely electrostatic shield, it is clear that the electron cloud 
would have to be located 5 km from the vehicle. Because the vehicle is a torus, its dimensions would 
have to be much larger, perhaps 20 km in diameter.

The field 5 km from the vehicle would have to be several kilo-gauss to contain the electron 
cloud. This requires a huge magnetic field. This field may be large enough to provide the required 
shielding by magnetic deflection without the need for the electron cloud. In any case, the energy stored 
in the magnetic field would probably be a hazard. Such magnetic shield concepts are discussed else-
where in this report.

  
Large Sail/Shield Concept

This was suggested as a concept for shielding against solar energetic particles. The idea is to take 
advantage of the fact that solar energetic particles (SEPs) steam along the interplanetary magnetic field 
lines connecting the spacecraft to the SEP source near the sun. A thin shield, like a solar sail, provides 
the protection. This shield would contain tiny magnets and scattering nuclei. It would be placed far 
upstream of the spacecraft to deflect the particles.

First, as was shown in the introduction, it is crucial that the shield also protect against galactic 
cosmic rays to be useful. Galactic cosmic rays are isotropic. The shield will not even provide protection 
from those arriving from the shielded direction since it will scatter as many cosmic rays into the solid angle 
subtended by the spacecraft as it will scatter out.

In the case of solar energetic particles, the shield causes a beam of particles to diverge, thus reduc-
ing the flux at the spacecraft. The available data on anisotropies in SEP events have been recently reviewed 
by Tylka (2000a). He shows that large SEPs become isotropic early in the development of the events, well 
before the maximum intensity is reached and long before half of the total fluence is integrated. Small events 
do show some anisotropy during the first half of the event. Reames (2000) shows data from such a small 
event recorded by the EPACT instrument on the Wind spacecraft. Even during the anisotropic part of the 
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event, the arrival directions are broadly spread about the local magnetic field direction with the half-intensity 
point at approximately 70° to the local magnetic field direction. Such a broad angular distribution largely 
defeats the idea of a thin shield far upstream because now the shield would have to subtend a large solid 
angle with respect to the spacecraft and would be less effective since the particles scattered away from impact 
with the spacecraft would now be partially compensated by ones scattered toward the spacecraft. Further-
more, the shield would be completely ineffective against the large event since they become isotropic early in 
their development.

The available data are primarily from lower energy SEP particles. The anisotropy of the higher 
energy particles that pose the hazard have not been investigated. The physical processes that cause the large 
events to become isotropic early (proton-generated waves that reduce the scattering mean free path by orders 
of magnitude), should still operate at higher energies however it can be quantitatively different. Tylka (2000b) 
points out that the most intense events are those for which the shock crosses the position of the spacecraft, 
increasing the intensity of the event by a large factor during the shock passage. During the most intense part 
of these events, when the spacecraft is within the shock, the particle will certainly arrive isotropically.

In summary, this concept does nothing to shield against galactic cosmic rays. Even if it were effective 
against SEPs, it would have to be augmented with a galactic cosmic ray shield. Any shield that is effective 
against galactic cosmic rays will be even more effective against SEP particles, rendering the proposed con-
cept redundant. Secondly, it is highly likely that the proposed concept would not be effective against SEPs 
either because the particles do not stream in a narrow beam along the interplanetary magnetic field direction. 
Furthermore the large events probably deliver most of the fluence to the spacecraft after becoming isotropic.

This concept is not recommended for further study.

Notes on Magnet Models

Point Dipole Fields
For positively charged particles in the distant field of a dipole, the geomagnetic cutoff is given  

by Stormer’s equation,

 P = [3X10-4µ/r2][(1-(1-cos(γ)cos2(λ))1/2/(cos(γ)cos(λ))]2

Where P is the cutoff magnetic rigidity in GV, µ is the magnetic moment in m2A, r is the distance 
from the center of the dipole in cm, γ angle between the particle’s trajectory and magnetic west and λ  
is the magnetic latitude.

Note that the cutoff depends on magnetic latitude and the arrival direction of the particle.  
For latitudes near 90 degrees the cutoff is near zero. So dipole fields protect best for particles arriving  
in the magnetic equatorial plane and least for particles arriving from the polar directions.

At the dipole equator, this equation simplifies to P = [3X10-4µ/r2]. The radius corresponding  
of a cutoff rigidity, P, is
 r = (3X10-4µ/P)1/2

This is called Stormer’s radius. It is a measure of magnetic shielding effectiveness.
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Other Fields
In principle one may be able to find a Stormer-like solution for the cutoff in field configurations 

other than a dipole but for the purposes of defining a figure of merit for the field, we recommend using  
the line integral of ∫ L BXdl

 

 along the path of the particle as it approaches the center of the field.

It should be noted that for each pathlength segment, dl, the angular deflection (in radians)  
= 3X104* ∫ L BXdl

 

/P where B is in kilogauss, l is in cm and P is in GV. If the particle comes in from 
infinity and crosses perpendicular to the field, it will be deflected 90 degrees at its point of deepest  
penetration.

We have carried out the integral numerically in a model of the Earth’s field to discover a refer-
ence value for this line integral. We integrated along the radius vector at -15 degrees latitude and  
+110 degrees east longitude down to the earth’s surface. It is known (e.g., Shea, Smart, and McCracken, 
1965) that the geomagnetic cutoff at this location is about 15 GV. We got a value of 960 Kilogauss.
meters. Since we integrated radially and not along the cosmic ray’s path, it is a bit of an under estimate 
(near cutoff cosmic rays spiral along the field until they mirror and leave), but it is close.

For non-gaussian fields we suggest using the criteria:

 ∫ L BXdl
 

 > 960 Kilogauss.meters

Limits on Exposure to Static Magnetic Fields
There are no statutory limits in the U.S. The International Commission on Non-Ionizing  

Radiation Protection recommends an occupational limit of 2 kilo-gauss. 

Report of the Extra-terrestrial Concepts Panel

Extra-terrestrial materials could be used for shielding astronauts from cosmic radiation on mis-
sions to Mars. We have identified four general sources of material: lunar regolith, comets, asteroids, and 
man-made orbital debris. Added equipment will be needed with all four sources for processing the mate-
rial into a useful shield. Added propulsion is also needed for all four options — the spacecraft is required 
to visit other objects before, during or after its trip to Mars. Each source of material also has its own 
drawbacks and advantages that will impact the cost and safety of these missions. We examine the details 
for each of these sources below.

Lunar Regolith
Lunar regolith – rock and dust from the lunar surface – has been examined as a source of shield-

ing for astronauts on the lunar surface. A few meters of this material can effectively shield lunar explor-
ers for extended periods of time. If this material is to be used as a radiation shield on a Mars Mission 
habitat module it must be combined with a binder such as epoxy to form shielding units and then  
transported from the lunar surface to the Mars Mission spacecraft. The mass of material required for 
an effective shield is quite large. A shield consisting of 20 g/cm2 of lunar regolith surrounding a habi-
tat module 8 m in diameter and 8 m long would require 40 metric tons of material but only reduce the 
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normally incident radiation by a factor of 2 (Simonsen, 1997). Such shielding would be inferior to more 
ideal shielding materials (polyethylene, water, or other hydrogenated materials) and be more massive 
as well. While lifting this material from the lunar surface may be more economical than lifting it from 
Earth, the penalties incurred by producing a massive shield that must be transported to and from Mars 
would seem prohibitive. Nominally, each metric ton of material added to the habitat module requires two 
metric tons of additional fuel to get it to and from Mars for a high performance (Isp = 940 sec) transpor-
tation system.

Lighter shielding material manufactured and transported from Earth will almost certainly be 
more effective and more economical in terms of both cost and energy.

Comets
The nuclei of comets would provide effective shielding due to the shear mass involved. A Mars 

Mission spacecraft might rendezvous with a comet in a suitable orbit and use the icy material for shield-
ing. Some engineering and materials processing would be required to produce an effective shield. The 
comet body itself would block half of the incident galactic cosmic rays but additional shielding would 
require burrowing into the object or processing material into a shielding blanket surrounding the human 
habitat. With this scenario it is possible to get a large amount of mass shielding without the energy cost  
of launching the mass or propelling it into a planet-crossing orbit. Water from the comet is also a  
potentially valuable resource.

Approach, landing, and burrowing in a comet is technically feasible, but presents enormous engi-
neering challenges, particularly for manned flight. Among the most serious challenges are the complex 
and unpredictable dust environment near an active comet nucleus, the unknown density, porosity, and 
material strength of cometary surfaces, and the lack of comets on orbits with practical combinations of 
perihelion, aphelion, and inclination (Harvard/CFA web site http://cfa-www.harvard.edu/iau/Ephemeri-
des/Comets/). Dust leaving a comet is accelerated near the surface to a velocity of order 1 km/s. Space-
craft would need to be shielded against impacts with both microscopic dust and macroscopic fragments 
flowing out from the surface. Cometary activity is seen in objects even at large heliocentric distances  
(e.g. 2060 Chiron at ~10 AU). This activity is episodic and unpredictable. Landing near a latent site of 
activity or burrowing into a high-pressure pocket of trapped volatiles could prove catastrophic to a mis-
sion. The unknown, unpredictable environmental hazards would jeopardize the safety of astronauts. Our 
search for comets with suitable orbits did not yield a single candidate. We expect that comets with suit-
able orbits are very rare to non-existent.

Asteroids
Asteroids could be used for shielding in much the same ways as suggested for comets. Asteroids 

have several advantages over comets. The environment surrounding an asteroid is not as volatile or dan-
gerous as that surrounding a comet. Asteroids with suitable orbits are also far more likely to be found. 
Using asteroids for shielding does share some of the same caveats associated with using comets or any 
other extra-terrestrial source – mining and/or materials processing equipment must be carried on the 
mission to produce the shield or shielding cavity. To be useful an asteroid must pass sufficiently close 
to both Earth and Mars on the same outbound orbit, while another, different asteroid would have to be 
utilized for the return to Earth.
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Currently over 1000 asteroids are known to have orbits that bring them near Earth and possibly 
Mars (Marsden, 2000). For the larger asteroids with diameters greater than 5 km this list is probably 
close to complete (Rabinowitz et al., 1995). For smaller asteroids with diameters greater than 1 km it 
probably contains somewhat less than half of the true population. The smallest useful asteroids will 
have diameters greater than about 100 m. This list of known Earth Crossing Asteroids probably con-
tains about 1% of these small asteroids. We have plotted orbits and calculated the positions of each of 
these asteroids, Earth, and Mars 40 years into the future. From this list of 1015 we find 63 asteroids with 
relatively close (less than 20 million miles) encounters with both Earth and Mars on the same orbital 
leg. However, the vast majority of these objects have relative velocities at these encounters that require 
prohibitive expenditures of energy. Limiting this search to asteroids with small relative velocities at the 
Earth and Mars encounters (comparable to those needed for the nominal mission without the asteroid 
encounter) yields only two candidates in the next 40 years and both provide only a return trip from Mars. 
A mission calculation using the best candidate (1999 JU3) requires 181 days just to rendezvous with 
the asteroid. The nominal return mission without the asteroid only takes 180 days total and requires less 
fuel.

We can imagine an “ideal” asteroid on an orbit that matches a nominal Mars mission transfer 
orbit. However, since two asteroids are needed for each mission (one for the trip to Mars and another  
for the return), we expect that the probability of finding a suitable set of these asteroids is extremely 
small. We also expect that the penalties in time and energy associated with the rendezvous with the 
asteroid and then the planets themselves will also make this alternative untenable. Nonetheless, as more 
of these objects are discovered it will be useful to examine their orbits to determine whether or not they 
might be used as resources on future missions.

Orbital Debris
Another possible technique for protecting a manned Mars mission is shielding it in a sheath 

composed of some of the man-made debris that has accumulated in geocentric orbit since the “space 
age” began in 1957. Of all the mass launched into orbit, the majority is still there and will remain there 
for many years. Only debris with an orbital altitude less than 400-500 kilometers is cleaned out by the 
process of energy reduction by atmospheric drag; above this regime, orbital debris stays indefinitely 
unless deorbited by a propulsion system. This debris comes from a variety of sources, and is of a variety 
of sizes, ranging from sub-micron to expended rocket bodies with masses of hundreds of kilograms.  
This population is logically divided into two parts; the population less than 1 centimeter in size, which 
must be treated by statistical techniques and by in-situ sampling, and that of a size greater than about  
20 centimeters (about 1 meter at geostationary altitude). This latter population is tracked (and each 
object uniquely identified) by the US military and orbits are made available to NASA and the public. 
The latter population is discussed here. The smaller debris is expected to be in generally similar orbital 
regimes. However, given the large total mass requirements of radiation shielding, and the broad dispersal 
of particles, it seems implausible that enough of the smaller can be accumulated to provide a significant 
amelioration.

Approximately 8000 trackable objects are in orbit at any given time. Of all these objects, only 
about 5%, or less than 500, are currently active or useful payloads. The rest include nonfunctioning 
payloads, rocket bodies, and fragmentation debris. These are at a variety of altitudes and in a variety of 
inclinations. After a breakup or other debris-producing event, the east-west distribution of the pieces 
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tends to spread out. However, the inclination stays essentially constant, and the apogee and perigee 
remain constant for orbits unaffected by atmospheric drag. The largest part of the object count is at vary-
ing altitudes from 300 to 1000 km. There is a significant component at 1500 km, above the radiation 
belts, and of course a significant population at geosynchronous altitude. The largest single population is 
found at an inclination near 63 degrees. This is the critical inclination of no perigee rotation into which 
many satellites are launched. There are also significant peaks at sun-synchronous altitudes of 80 and  
100 degrees, and a population near the latitude of every major launch site.

There are three significant problems to space debris capture. Finding it is not a problem  
for this instance, since all large pieces are well tracked (http://www.spacecom.mil/factsheetshtml/ 
reentryassessment.htm; http://science.nasa.gov/Realtime/JTrack/). There is some exception to this at 
geosynchronous altitude, where tracking is more difficult and non-functional objects are occasionally 
lost for a while because of lack of tasking. The first real problem is matching velocity and position with 
the object well enough to capture it. The velocity match is necessary because the possible delta V of up 
to 15 km/s is far too large for nondestructive capture. This requires a maneuvering capability. The energy 
required depends strongly on the type of orbit alteration required. Changing inclination is tremendously 
expensive in energy. Changing inclination by 90 degrees requires as much energy as the initial launch. 
Changing altitude by a significant amount is less expensive in energy. The most economical strategy 
is changing position in an east-west direction. This can be easily accomplished at any altitude; a small 
along-track thrust will change the orbital period, which will cause the orbit to precess in an east-west 
direction. Thus, any debris collection campaign should be preceded by a specific analysis of the objects 
to be accumulated to guide the collection. The debris collection scenario is well suited to a low thrust ion 
engine, but significant time will be required for multiple rendezvous. Thus, the concept of a precursor 
garbage collector satellite would probably be required.

When position and velocity are matched adequately, the debris must then be captured. Various 
techniques could be used; perhaps the best is a “butterfly net” strategy. Note that some kind of local 
maneuvering system must be in place to accomplish this, as adequate accuracy cannot be obtained by 
ground tracking.

After capturing, the debris must be formed to shield the habitat module. There are various pos-
sibilities here. It could be lashed in place, in a `hermit crab’ strategy but it is questionable whether or not 
such an assemblage could survive the rigors of subsequent orbital maneuvers to get to and from Mars. 
It may be more desirable to form it into an ordered sheathing material. This would require some sort of 
crushing or forming machine in place. A central driver in this is the total thickness of shielding that must 
be in place. If the total thickness of aluminum or equivalent in the shield is 25 centimeters this represents 
some 150 metric tons, a significant fraction of the total debris mass. It also requires matching velocities 
with a number of large objects.

Finally, permission must be obtained from satellite owners since, under the Convention on Regis-
tration of Objects Launched into Outer Space of 1974, they retain title and liability even though a craft  
is defunct.

As with some of the other extra-terrestrial materials, the use of in-place space debris to shield  
a manned Mars Mission is certainly possible. It will require planning in any event, and its practicality  
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is better for a shielding layer that is reasonably thin. As with the other concepts employing extra- 
terrestrial material, it requires manufacturing and/or materials processing equipment and could require 
significant amounts of fuel to maneuver between objects. One potential hazard with orbital debris  
may be the volatility of the debris itself (unspent fuel, etc.).

Conclusions
Examination shows that all these extra-terrestrial sources for shielding have significant prob-

lems. Lunar regolith can be disregarded due to the energy requirements associated with landing and 
lifting a substantial amount of material on and off of the lunar surface. Comet nuclei for shielding can 
be excluded due to safety concerns associated with the volatile environment and the energy and time 
required for such rendezvous. Asteroids provide more benign environments and may populate orbits 
that could be useful on such missions. However, we expect that the probability for finding a sufficient 
number of candidate objects is very small and that the penalties of energy and time associated with the 
asteroid rendezvous will make this option unattractive. Nonetheless, we should continue to examine the 
orbits of newly discovered asteroids to determine their utility for these missions. Orbital debris consist-
ing of small objects will be difficult to accumulate and assemble into a useful shield. Larger pieces of 
orbital debris might be used, requiring fewer captures, but the acquisition of sufficient material and its 
assembly into a space-worthy shield will be difficult at best. This option might become more attractive if 
a “space garbage collector” was already deployed to clean up the orbital debris.

Report of the Novel Materials Concepts Panel

The objective set before the Materials Group of the HEDS Radiation Shielding Workshop was 
to review the potential efficiency of several novel materials or combinations of materials for shielding 
of human crew during a Mars expedition. Our purpose was neither to recommend a particular shielding 
material, nor to provide a definitive analysis of the claims made of certain new materials.

The radiation field with which we are primarily concerned is that of the galactic cosmic rays 
(GCRs), though there is also concern with intense, but short duration, fluxes associated with solar erup-
tions. In both cases the radiation of concern is relativistic atomic nuclei, composed of elements ranging 
in atomic number from hydrogen to iron. As many authors have pointed out, the most effective material 
per unit mass of shield is provided by hydrogen. Shields of heavier elements, lead for example, while 
commonly used for x- or γ-ray absorption, are much less efficient per unit mass than lighter elements 
for absorbing energetic nuclear particles. Indeed, detailed transport calculations show clearly that these 
heavy target nuclei are inefficient not only because of their lower cross-sections per g/cm2, but also 
because they serve as the sources of dose-producing secondary particles such as short-range heavy 
nuclear fragments and penetrating neutrons. These effects may only be quantitatively assessed by a 
radiation transport calculation (Wilson, et al., 1995, 1997, 1998). The results of two such calculations for 
several shielding materials in the GCR environment are shown in figure 1 (same as figure 5 on page 6), 
and figure 2 (Simonsen, 1997; Wilson, et al., 1995; Wilson, et al., 1997 — NASA CP-3360). These fig-
ures clearly show the monotonic increase in shielding efficiency as the mean atomic weight of the shield 
material decreases. They also show the non-intuitive (to those familiar with the exponential absorption 
law) result that 20g cm-2 of lead shielding against the GCR provides no reduction at all in tissue dose, 
while the same mass of hydrogen reduces the dose to a small fraction of the unshielded case. The curves 
also clearly show the relative inefficiency of aluminum as a shielding material when compared to O, C 
and H, i.e., elements that are present in water and polyethylene.
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Figure 1.  5-cm depth dose for GCR at solar minimum as a function 
of areal density for various materials.

Figure 2.  Relative attenuation of dose equivalent as a function of shielding 
depth (in terms of areal density, g/cm2). (Wilson et al., 1997, 1995)

The materials we have considered for shielding against GCRs are:

• Carbon nano-materials with absorbed H
• Metal hydrides: LiH, MgH2, LiBH4, NaBH4, BeH2, TiH2 and ZrH2 
• Pd (and alloys) with absorbed H
• Hydrocarbons (polyethylene or (CH2)n ) with boron 
• Quasi-crystals, eg. (TiZrNi)1 H1.7
• Condensed hydrogen (solid and liquid)
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Water, while not on the list given us, is carried in large masses on manned missions and is an 
important and efficient shielding material. We further note that the list of materials considered is not 
inclusive and that other hydrogen rich compounds may exist for application as viable shielding.

Table 1 shows these materials with their relevant properties. The key data in this table are (1) the 
weight % of hydrogen, and (2) the atom density of H (the number of H atoms per cm3). It is well estab-
lished that H provides the best shielding protection against GCRs and therefore, the aim is to maximize 
its incorporation. To this end, using the dose curves of Wilson, et al., 1995, 1997 and Simonsen, et al., 
1997, and the materials data in Table 1, we have considered the following characteristics:

•  The efficiency for dose reduction (must be calculated for each case) 
•  The weight efficiency
•  The volume efficiency
•  Other considerations: dual use, toxicity, ease of handling, safety, structural applications, material 
 properties such as thermal and electrical conductivity.

Table 1 
Volume and Mass Density of Hydrogen Contained in Materials

H2(s) LiH BeH2 MgH2 LiBH4 NaBH4 CH2/n H2O Pd/Ag Nano- Quasi Al

or (1) Carbons Crystals
density    ~.07 0.78 0.65 1.45 0.66 1.07 0.92 1.0 ~10.0 ? ? 2.7
(g cm-3)

wt % H 100 12.7 18.3 7.7 18.4 10.7 14.3 11.2 1-4 6 2.5 -
(to 20%+)

atom % 100 50 67 67 67 67 67 67 >100 30 to >100 67 -
H
H atoms 5.3 5.9 7.8 6.5 7.2 7.9 6.7 20? ? -
cm-3

(x1022)

It is noted that, while the weight efficiency (compared to pure H2) of all the materials considered 
varied from 5-20% H, the volume efficiency of all the materials is similar. Where the data are reasonably 
well known, all showed a H density on the order of 6-7x1022 atoms cm-3. In fact, the lowest density of 
the group is condensed H2 at 5-6x1022. This volume efficiency number gives an idea of how thick the 
shielding layer would have to be, assuming the bulk of the shielding is provided by the hydrogen. The 
volume efficiencies are not considered well known for carbon nano-materials or palladium alloys.

Novel Materials

Carbon Nano-materials
This group includes carbon nano-tubes, fullerenes (buckyballs) and nano-fibers. There is cur-

rently considerable interest in them from a nano technology standpoint and development that includes 
diverse applications. Funding is supplied (in the US) by NSF, DOE, and NASA and the literature is vast 
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and quickly growing. In the present context we have reviewed some studies of the materials for hydro-
gen storage (the DOE hydrogen storage program). A reference review is given by Dresselhaus, Novem-
ber 1999. We found no reference to studies of the material for application as a radiation shield. The 
panel briefly interviewed M. J. Heben of the DOE National Renewable Energy Laboratory, an active 
researcher in the hydrogen storage area.

Weight % of storage of H in nano-carbons seems well-documented at the 6% level, but claims of 
up to and exceeding 20% have been published (see Dresselhaus). For comparison, our reference material 
is polyethylene (CH2)n, hydrocarbon polymer, with a H content of 14% by weight (see Table 1).

Further Studies: In light of the facts that:
• C is probably the next most efficient GCR shielding element to H 
• Nano-carbons store large amounts of H
• Nano-carbons can have very large material strengths, as well as useful electrical and thermal 
 conductivities. Thus, the number of dual-use opportunities appear greater than with polymers  

such as polyethylene

We recommend that NASA study the H storage capabilities of nano-carbons, and their chemical  
and physical properties. It is important that NASA keeps abreast of this rapidly moving research field.

Metal Hydrides: LiH, BeH2, MgH2, LiBH4, NaBH4, TiH2, ZrH2
Metal hydrides are an efficient means of storing hydrogen, with composition by weight from 7 

to 18% hydrogen. LiH is castable and has long been considered for space application (Welch, 1974) and 
remains the benchmark in this group. Other hydrides contain heavier metals (with reduced dose-reduc-
tion efficiency) and lower mass efficiency (ZrH2, TiH2, NaBH4). BeH2, with uncertain reactivity and 
toxicity offers little advantage over LiH except in mass efficiency. LiBH4, the most mass efficient in 
the group at 18.4% H is considered worthy of study. Only a radiation transport calculation or accurate 
experimental evaluation will show if the presence of B in the material will counteract its higher H con-
tent (with respect to LiH) as a GCR shield.

Metal hydrides react with air and moisture, though with different rates. They are being consid-
ered as an H storage medium by the Department of Energy hydrogen storage program. Typically the H2 
is released for use as a fuel by the addition of water to the hydride. This reactivity is of concern if the 
material is inside the living compartment where oxygen and water are both present. LiH can be melted 
and cast in inert atmospheres into convenient forms.

Hydride reaction with water (which releases H2) may serve a dual use by providing a source of 
fuel.

Further Studies: Stay abreast of current developments, especially in liaison with DOE. Evalu-
ate the shielding effectiveness of these hydrides relative to polyethylene using a transport code such as 
HZETRN. Study mechanical properties, reactivity and packaging, and hazards abatement.
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Palladium Alloys
Palladium has long been known for its ability to dissolve hydrogen. The theoretical solubility 

of H in pure Pd approaches a 1:1 atomic ratio, or about 1% by weight of H. Pd alloyed with silver may 
extend this limit to 4% or more. If true, the Pd/Ag/H system would provide the largest atomic ratio of H 
in any combinational materials system.

We are not aware of any published studies considering Pd/H as a shielding material.

Other Comments: While Pd is very expensive (and relatively heavy), it is unique in its behavior 
with hydrogen. Other useful properties include electrical and thermal conductivity, mechanical strength, 
and corrosion resistance.

Further Studies: We recommend investigating the Pd alloy system’s ability to store hydrogen  
as well as assessing its potential to serve as a shielding material. We also recommend the shielding  
effectiveness be compared with polyethylene using a transport code such as HZETRN.

Borated Polyethylene (CH2)n
Polyethylene is a cheap, readily available hydrocarbon polymer with established shielding capa-

bilities in the GCR energy field. High density polyethylene is already an approved material for use in 
manned space missions. It is one of the reference shielding materials used by the panel, and its shielding 
properties have been calculated (e.g. by Wilson, et al., 1992 [Figs. 1, 2]).

Polyethylene may readily be cast or hot-pressed into slabs or arbitrary shapes, however, it has 
poor mechanical characteristics (low strength, poor dimensional stability). The potential for dual-use 
seems, therefore, rather low.

The addition of B compounds to the matrix has been suggested for the purpose of absorbing  
thermal neutrons, a major concern for human exposure. However, radiation transport calculations  
(e.g., Wilson, et al., 1997) clearly show that the addition of boron slightly increases the tissue dose 
below the absorber, presumably due to the increased likelihood of fragment emission from the boron 
nuclei.

Further Studies: While particular shield configurations may need to be examined for potential 
boron incorporation, the panel believes this should be done by calculation and materials research studies 
are not recommended. We do recommend engineering studies aimed at incorporating polyethylene  
as spacecraft components.

Quasi-crystals (Alloys of TiZrNi)
These unusual materials have been studied in programs funded by the DOE, NSF, and NASA 

(e.g., see Kelton, K.F., Washington University). The uneven packing of metal atoms in the lattices 
appears to permit absorption of relatively large amounts of hydrogen (1-2.5% by weight). No evidence 
of research on shielding applications was found by the group, likely in view of the relatively low H stor-
age efficiency and the high Z of the component metals.

Further Studies: Not recommended



40

Solid Hydrogen
Pure hydrogen has the best shielding performance for the GCR environment of all materials  

per unit mass. To be used efficiently it must be condensed into a solid or liquid.

A scenario has been proposed (Post) in which the uniquely beneficial shielding properties of 
solid H2 against the GCR field would be used. Utilizing relatively cheap unmanned rockets large H2 
snowballs could be lifted to orbit, released, and then ‘strapped’ onto a Mars-bound vehicle. The snow-
balls would be encased in efficient insulation and vented to space. Arguments have been made that 
handling solid H2 under these conditions would be much easier than liquid H2. These arguments did not 
persuade the panel.

Further Studies: Not recommended

Liquid Hydrogen
Large volumes of liquid H2 are routinely carried into space as fuel and the holding/transport 

technology seems well-developed. Several of the Martian Mission plans, whether chemical- or nuclear-
rocket-powered, involve the transport of large masses (tens of tons) of liquid H2. Although not a “novel 
material,” it seems prudent to consider using part of this fuel as radiation shielding for the crew, rather 
than transporting many tons of passive shielding which would have no dual or contingency use. This 
would presumably require considerable departures from current vehicle design configurations.
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APPENDIX C—ASSESSMENT OF ADVANCED CONCEPTS
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ASSESSMENT OF ADVANCED CONCEPT

Category: Active (Electromagnetic) Shield Concept: Magnetic Fields with Local    
    Strong Magnets

1. Does it obey the laws of physics?   Yes X No

2. Could it
 a. Reduce the GCR flux significantly?   Yes X No
 b. Reduce the GCR dose significantly?  Yes X No

3. Does it have dual use?     Yes No X
    Describe other use:

4. Is a practical implementation and engineering solution conceivable?  Yes No X
    Explain: The mass of the coil will be very large. The stored energy will be very large. A very strong 
structure would be required to support magnet coils.

5. Are there significant safety issues that the engineering must address?  Yes X No
What are the hazards? If superconductors are used for the magnet, a quench would release a dangerous 
amount of energy. 

6. How does it compare with other ideas in the category? Poorly
Advantages: None
Disadvantages: Launch mass would exceed that of passive shielding due to structure required to 
support magnet coils.
Other Comments:
Recommend future research for the radiation shielding program? Yes No X 
If yes, briefly describe next phase of investigation:

Submitted by: Jim Adams
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ASSESSMENT OF ADVANCED CONCEPT

Category: Active (Electromagnetic) Shield  Concept: Plasma Inflated Field

1. Does it obey the laws of physics?    Yes X No

2. Could it
 a. Reduce the GCR flux significantly?   Yes X No
 b. Reduce the GCR dose significantly?   Yes X No

3. Does it have dual use?     Yes X No
    Describe other use: Propulsion

4. Is a practical implementation and engineering solution conceivable?  Yes X   No
    Explain: A model for vacuum chamber tests is under construction at MSFC now.

5. Are there significant safety issues that the engineering must address?  Yes     No X
    What are the hazards?

6. How does it compare with other ideas in the category? It is the best of this category.
Advantages: Probably can be scaled to provide adequate protection while keeping the mass and stored 
energy reasonable. Power to replace plasma is also possibly reasonable.  
Disadvantages: Produces its own radiation belts? Stability of plasma. Loss of plasma at field 
boundaries with solar wind.
Other Comments:

    Recommend future research for the radiation shielding program? Yes X No
If yes briefly describe next phase of investigation: The outstanding questions about the concept need 
to be answered. If a careful study of the model demonstrates that it still shows promise of providing 
adequate shielding then work should begin on a test model. The first step is a detailed review of  
calculations/estimates for a system that would provide ∫ L BXdl

 

 = 1000 for GCR shielding, and  
a review of vacuum chamber test results. Next, cosmic rays should be traced through the field to 
determine its shielding effectiveness.

Submitted by: Jim Adams
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ASSESSMENT OF ADVANCED CONCEPT

Category: Active (Electromagnetic) Shield Concept: Pure Electrostatic Shield

1. Does it obey the laws of physics?   Yes X No

2. Could it
 a. Reduce the GCR flux significantly?   Yes X No 
 b. Reduce the GCR dose significantly?   Yes X No

3. Does it have dual use?    Yes No X
    Describe other use:

4. Is a practical implementation and engineering solution conceivable?  Yes No X
Explain: While the concept does not violate the laws of physics, recharging the field because of 
leakage to the space plasma, will require a large power source. Charging the spacecraft will require a 
particle accelerator capable of 10 GeV energy.

5. Are there significant safety issues that the engineering must address?  Yes X No
What are the hazards? Large positive charge on spacecraft to produce ~10 GV potential. Electrons 
from space plasma will have 10 GeV energy when they impact on spacecraft. They will cause 
electromagnetic showers extending into the crew quarters.

6. How does it compare with other ideas in the category? It has a low score relative to the plasma 
concepts. 

Advantages: None
Disadvantages: Many significant complications in design/implementation
Other Comments: With electrostatic potentials so large, prevention of arc discharges seems 
impossible. The vehicle will have to be very large.
Recommend future research for the radiation shielding program? Yes No X 
If yes, briefly describe next phase of investigation:

Submitted by: John Watts
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ASSESSMENT OF ADVANCED CONCEPT

Category: Active (Electromagnetic) Shield Concept: Electrostatic from ‘Exotic Ideas’   
       (Natural Spacecraft Charging)

1. Does it obey the laws of physics?   Yes X  No

2. Could it
 a. Reduce the GCR flux significantly?   Yes No X
 b. Reduce the GCR dose significantly?   Yes No X 

3. Does it have dual use?    Yes No X 
Describe other use:

4. Is a practical implementation and engineering solution conceivable?  Yes No X
Explain: Will not work at galactic cosmic ray energies. GCRs are thousands of MeV and require 
electrostatic potentials of 10,000 of MV (million volts) for shielding them. Spacecraft charging, even 
with grids, could not come close.

5. Are there significant safety issues that the engineering must address?  Yes No X
What are the hazards?

6. How does it compare with other ideas in the category? Lowest score
Advantages. None 
Disadvantages: 
Other Comments: This idea could generate low electrostatic potentials, but the principal radiation 
problem is with GCR, requiring ~ 1010 volts.
Recommend future research for the radiation shielding program? Yes No X 
If yes, briefly describe next phase of investigation:

Submitted by: John Watts
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ASSESSMENT OF ADVANCED CONCEPT

Category: Active (Electromagnetic) Shield Concept: Plasma Electrostatic Shield

1. Does it obey the laws of physics?   Yes X  No

2. Could it
 a. Reduce the GCR flux significantly?   Yes X  No 
 b. Reduce the GCR dose significantly?   Yes X  No

3. Does it have dual use?    Yes No X
Describe other use:

4. Is a practical implementation and engineering solution conceivable?  Yes No X
Explain: There would be large charge losses due to electron scattering losses, out-gassing from 
the spacecraft and other sources. These losses would need to be replaced by a high voltage particle 
accelerator. To shield against GCR, one still needs ~ 1010 volts. Access to the spacecraft would be 
prohibited without discharge of the voltage. The spacecraft vehicle would have to be at least 10 km in 
diameter.

5. Are there signiflcant safety issues that the engineering must address?  Yes X No
What are the hazards? Large positive charge (~1 coulomb) on spacecraft to produce ~10 GV 
potential. Failure of magnet, or possibly instabilities in the electron cloud, would discharge the 
trapped charge onto the spacecraft (very large discharge).

6. How does it compare with other ideas in the category? It has a low score relative to the neutral 
plasma concepts but higher than pure electrostatic. 

Advantages: The spacecraft/electron cloud combination would appear neutral relative to the space 
plasma and thus would not be immediately discharged as a pure electrostatic shield would.
Disadvantages: Plenty. Implementation would require exceptional high voltage engineering. Other 
Comments: The published concept and study (Levy, 1962) was for a short term ~ 1 day shield against 
solar particle events. Shielding against galactic cosmic rays would be required over the entire mission 
and an up-scaling of potential by more than two orders of magnitude.
Recommend future research for the radiation shielding program? Yes No X 
If yes, briefly describe next phase of investigation:

Submitted by: John Watts
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ASSESSMENT OF ADVANCED CONCEPT

Category: Active (Electromagnetic) Shield Concept: Large Coil

1. Does it obey the laws of physics?   Yes X No

2. Could it
 a. Reduce the GCR flux significantly?   Yes X No 
 b. Reduce the GCR dose significantly?   Yes X No

3. Does it have dual use?    Yes X No
Describe other use: Propulsion

4. Is a practical implementation and engineering solution conceivable?  Yes X No
Explain: There are many questions about the practicality that needs to be addressed, including the 
actual shielding achievable and the numbers and sizes of coils needed for GCR shielding, as well as 
deployment problems, passive cooling, etc.

5. Are there significant safety issues that the engineering must address?  Yes X No
What are the hazards? Dangerously high stored energy

6. How does it compare with other ideas in the category? Ranks second.
Advantages: Potential of providing adequate shielding, without massive structure to support coils, 
large stored energy, and risks from large magnetic field.
Disadvantages: Huge stored energy. How to deploy? Stability of the coil? Stress in the coil? Mass of 
the structure? How to keep cool? Does it develop radiation belts?
Other Comments: While a single large coil will not work, it may be possible to find a multicoil 
configuration that will produce a magnetic field of ~ 100 gauss over most of a spherical volume of 
radius 10 km. This would be an effective shield for GCRs.
Recommend future research for the radiation shielding program? Yes X No
If yes, briefly describe next phase of investigation: A search should be made for a multi-coil 
configuration that will work.

Submitted by: Jim Adams
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ASSESSMENT OF ADVANCED CONCEPT

Category: Active (Electromagnetic) Shield Concept: Large Sail/Shield 

1. Does it obey the laws of physics?   Yes X  No 

2. Could it
 a. Reduce the GCR flux significantly?   Yes No X
 b. Reduce the GCR dose significantly?   Yes No X

3. Does it have dual use?    Yes No X 
Describe other use:

4. Is a practical implementation and engineering solution conceivable?  Yes  No X
Explain: It would require a huge shield to be held at a great distance from the vehicle by means of 
some structural elements. The scale of the shield makes its engineering hard to conceive.

5. Are there significant safety issues that the engineering must address?  Yes No X
What are the hazards?

6. How does it compare with other ideas in the category? Poorly
Advantages: None
Disadvantages: Requires a huge shield to be deployed, but the shield would be partially effective only 
against solar energetic particles, probably only in the early part of each event. 
Other Comments:
Recommend future research for the radiation shielding program? Yes No X
If yes, briefly describe next phase of investigation:

Submitted by: Jim Adams
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ASSESSMENT OF ADVANCED CONCEPT

Category: Extra-terrestrial Materials Concept: Comet

1. Does it obey the laws of physics?   Yes X No

2. Could it
  a. Reduce the GCR flux significantly?  Yes X No 
  b. Reduce the GCR dose significantly?  Yes X No 

3. Does it have dual use?    Yes X No 
 Describe other use: Availability of water. Detailed study of comets.

4. Is a practical implementation and engineering solution conceivable?  Yes X No
 Explain: Approach, landing, and burrowing in a comet is technically feasible, but presents enormous 
engineering challenges, particularly for manned flight. Among the most serious challenges are the 
complex and unpredictable dust environment near an active comet nucleus, the unknown density, 
porosity, and material strength of cometary surfaces, and the lack of comets on orbits with practical 
combinations of perihelion, aphelion, and inclination.

5. Are there significant safety issues that the engineering must address?  Yes X No
 What are the hazards? i. Dust leaving a comet is accelerated near the surface to a velocity of order 
1 km/s (reference: see report). Spacecraft would need to be shielded against impact with both 
microscopic dust and macroscopic fragments flowing out from the surface.
 ii. Cometary activity is seen in objects even at large heliocentric distances (e.g. 2060 Chiron at ~10 
AU). This activity is episodic and unpredictable. Landing near a latent site of activity or burrowing 
into a high-pressure pocket of trapped volatiles could prove catastrophic to a mission.

6. How does it compare with other ideas in the category?  Comets have the same advantages as 
asteroids, but many more disadvantages.

Advantages: It is possible to get a large amount of mass shielding without the energy cost of 
launching the mass or propelling it into a planet-crossing orbit. Cometary water is a potentially 
valuable resource.
Disadvantages: Unknown, unpredictable environmental hazards would jeopardize the safety of 
astronauts. Comets with suitable orbits are very rare to non-existent. Our search of a comet data base 
yielded no reasonable candidate in the next 20 years.
Other Comments:
Recommend future research for the radiation shielding program? Yes No X 
If yes, briefly describe next phase of investigation:

Submitted by: Keith Noll
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ASSESSMENT OF ADVANCED CONCEPT

Category: Extra-terrestrial Materials Concept: Asteroids 

1. Does it obey the laws of physics?   Yes X No 

2. Could it
  a. Reduce the GCR flux significantly?  Yes X No 
  b. Reduce the GCR dose significantly?  Yes X No

3. Does it have dual use?    Yes X No 
Describe other use: Scientifically interesting material.

4. Is a practical implementation and engineering solution conceivable?  Yes X No
Explain: One might find an asteroid that swings by Earth and then Mars that requires little penalty in 
orbital energy to rendezvous with asteroid and depart for Mars. However, an alternate object would be 
required for the return or the mass used for shielding would need to be carried with you to Mars and 
back to Earth.

5. Are there significant safety issues that the engineering must address?  Yes X No
What are the hazards? Concerns about low gravity of asteroid and integrity of asteroidal material in 
capture (grappling) and mining or covering spacecraft with a thick layer of material.

6. How does it compare with other ideas in the category? Better than comets
Advantages: Mass may be already directed towards Mars or Earth.
Disadvantages: Probability of finding such objects is very small. Any such objects are likely to be 
short lived due to encounters with Earth and Mars. 1000 objects known (estimated to be 10% of total) 
of these ? (0) are energetically reasonable with the present database
Other Comments: Extremely unlikely to find a ‘family’ of objects to use as shields. This leaves the 
possibility of using a single asteroid as source of shield material that is retained at Mars for return trip.
Recommend future research for the radiation shielding program? Yes X No 
If yes, briefly describe next phase of investigation: Continue to examine database

Submitted by: Workshop participant (David Hathaway review)
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ASSESSMENT OF ADVANCED CONCEPT

Category: Extra-terrestrial Materials Concept: Asteroids

1. Does it obey the laws of physics?   Yes X No

2. Could it
  a. Reduce the GCR flux significantly?  Yes X No
  b. Reduce the GCR dose significantly? Yes X No

3. Does it have dual use?    Yes No X 
Describe other use:

4. Is a practical implementation and engineering solution conceivable?  Yes No X
Explain: The delta velocities (∆Vs) are too large to make this feasible. The capture ∆V at the asteroid ranges 
from 3-17 km/s (compared to 0-1.8 km/s for capture at Mars), due to timing and relative geometry. Departure 
∆Vs from the asteroid will have the similar 3-17 km/s magnitudes, since relative geometries between the 
asteroid and Mars are rarely ideal. The asteroid must pass sufficiently close to both Earth and Mars on the same 
outbound orbit, while a different asteroid would have to be utilized similarly for the return to Earth.

5. Are there significant safety issues that the engineering must address?  Yes X No
What are the hazards? Large ∆Vs require large propellant loads, which require long burn times on the engines, 
creating a reliability/safety concern with the propulsion subsystem. Additional burns would also be needed to stop 
at and depart from the asteroid, which are not required in the nominal mission.

6. How does it compare with other ideas in the category?
Advantages: i. Over the Comet option: There are more asteroids than comets to use, especially those near the 
appropriate energy levels that are usable for ‘hitch-hiking’ to Mars.
ii. Over the Earth Orbital Debris option: The amount of energy expended to collect sufficient mass to build the 
required shielding from orbital debris would likely be greater than that necessary for the asteroid mission.
iii. Over the Lunar Resources Option: Using Lunar regolith requires ∆Vs to stop at the Moon, descend to the 
surface, ascend back up to orbit, and then inject onto a Mars trajectory, most ∆Vs while carrying the additional 
shield mass.
Disadvantages: i. The likelihood that there are a pair of asteroids that satisfy the mission trajectory requirements 
are extremely small, due to the required similarity (<2+° difference in orbital plane, <2+° difference in flight path 
angle, <few days difference in timing/phasing) of the asteroid orbit to that of both Earth and Mars.
ii. The energy requirements to accomplish advantageous use of an asteroid from a radiation perspective penalize 
the stack mass to an extent that the mission could be more easily done lifting additional shielding from Earth’s 
surface that would already be optimized/customized for use on the Mars piloted hab/stack. 
Other Comments: There does not appear to be any reasonable option in the Extra-terrestrial Concepts section 
to reduce the radiation that the crew would experience on a Mars exploration mission. Other solutions must be 
found to meet the new radiation exposure limits.
Recommend future research for the radiation shielding program? Yes No X 
If yes, briefly describe next phase of investigation:

Submitted by: Larry Kos
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ASSESSMENT OF ADVANCED CONCEPT

Category: Extra-terrestrial Materials Concept: Artificial Space Debris (Large Objects)

1. Does it obey the laws of physics?   Yes X No

2. Could it
  a. Reduce the GCR flux significantly?  Yes X No 
  b. Reduce the GCR dose significantly?  Yes X No

3. Does it have dual use?    Yes X No
Describe other use: Possibility of improving the space environment by removing debris.

4. Is a practical implementation and engineering solution conceivable?  Yes X No
Explain: Yes, but not easy. Requires matching velocity/orbit with several (or more) objects, capturing 
and possibly reforming. Requires time and energy — could be LEO or GEO.

5. Are there significant safety issues that the engineering must address? Yes X No
What are the hazards? Residual fuel and other toxics (probably not insurmountable). 

6. How does it compare with other ideas in the category?
Advantages: Reliable. Availability of fairly large amount of mass in known orbits, can catch with 
precursor ‘garbage collector’ satellite.
Disadvantages: Can’t get a one-step solution, as with an asteroid. Complex debris accumulation 
strategy.
Other Comments: ‘Space garbage collection’ might be environmentally popular. Relaxing of radiation 
standards would make it more practical. Present required shield mass estimate is about 150 tonnes of 
aluminum (part of which is already in the transit vehicle structure/ equipment)
Recommend future research for the radiation shielding program?  Yes X No
If yes, briefly describe next phase of investigation: There should be a more specific study using the 
space catalog of which actual objects/categories are best to use together with energy expenditures, 
capture mass, and materials. Also a ‘white paper’ on a proposed capture mechanism, including 
tethering or cruising after capture.

Submitted by: Steve Knowles
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ASSESSMENT OF ADVANCED CONCEPT

Category: Extra-terrestrial Materials Concept: Artificial Space Debris (Large Objects)

1. Does it obey the laws of physics?   Yes X No

2. Could it
  a. Reduce the GCR flux significantly?  Yes X No 
  b. Reduce the GCR dose significantly?  Yes X No

3. Does it have dual use?    Yes X No
Describe other use: Surrounding critical parts of spacecraft with debris material will also provide 
protection from impacting meteoroids.

4. Is a practical implementation and engineering solution conceivable?  Yes No X  
(with current state-of-the-art)

Explain: Costly from an energy standpoint to gather up the debris. After collection the debris must be 
processed to produce usable shielding blocks/plates which will also be costly from energy standpoint 
– primarily aluminum, poor shielding.

5. Are there significant safety issues that the engineering must address?  Yes X No
What are the hazards? Debris may contain flammable or explosive materials (propellant, pyrotechnic 
devices, etc.), structural integrity of blocks of debris shielding poor.

6. How does it compare with other ideas in the category?  All ideas proposed to use E.T. materials have 
severe problems associated with them. 

Advantages: Orbiting debris has energy of orbit.
Disadvantages:
Other Comments:
Recommend future research for the radiation shielding program?  Yes No X 
If yes, briefly describe next phase of investigation:

Submitted by: Workshop participant (David Hathaway review)
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ASSESSMENT OF ADVANCED CONCEPT

Category: Novel Materials Concept: Borated Polyethylene

1. Does it obey the laws of physics?   Yes X No

2. Could it
  a. Reduce the GCR flux significantly?  Yes X No 
  b. Reduce the GCR dose significantly?  Yes X No

3. Does it have dual use?    Yes  No X
Describe other use:

4. Is a practical implementation and engineering solution conceivable? Yes X No
Explain: It could be used in the same way as polyethylene.

5. Are there significant safety issues that the engineering must address?  Yes No X
What are the hazards? Somewhat flammable

6. How does it compare with other ideas in the category?  Polyethylene is currently the best ‘standard or 
non-novel’ solid shielding material in terms of shield weight. (However shielding calculations indicate 
the addition of ~20% boron slightly degrades shielding.)

Advantages: High hydrogen content, cheap
Disadvantages: Non-structural
Other Comments: Insulation?
Recommend future research for the radiation shielding program?  Yes X  No
If Yes, briefly describe next phase of investigation: Perform calculations with improved codes to 
evaluate relative shielding effectiveness, how much B?, how bonded?

Submitted by: John Gregory
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ASSESSMENT OF ADVANCED CONCEPT

Category: Novel Materials Concept: Quasi-crystals

1. Does it obey the laws of physics?   Yes X  No

2. Could it
  a. Reduce the GCR flux significantly?  Yes  No X 
  b. Reduce the GCR dose significantly?  Yes  No X

3. Does it have dual use?    Yes  No X 
Describe other use:

4. Is a practical implementation and engineering solution conceivable? Yes X No
Explain: Need to fabricate, fill with hydrogen, bind into other engineering material.

5. Are there significant safety issues that the engineering must address?  Yes No X
What are the hazards?

6. How does it compare with other ideas in the category?
Advantages: Better than Al in shielding?
Disadvantages: Contains high Z material (TiZrNi), producing a lot of neutrons in interactions, 
hydrogen only 2.5% by weight wt (max), hard to fabricate into shields 
Other Comments: Of interest for hydrogen storage. Worthwhile to periodically survey literature for 
improvements in this field.
Recommend future research for the radiation shielding program?  Yes No X 
If yes, briefly describe next phase of investigation: Need to evaluate with shielding calculations the 
relative shielding effectiveness of all materials on list.

Submitted by: John Gregory
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ASSESSMENT OF ADVANCED CONCEPT

Category: Novel Materials  Concept: Hydrogen (condensed)

1. Does it obey the laws of physics?   Yes X No

2. Could it
  a. Reduce the GCR flux significantly?  Yes X No 
  b. Reduce the GCR dose significantly? Yes X No

3. Does it have dual use?    Yes X No 
Describe other use: Fuel cell, propulsion.

4. Is a practical implementation and engineering solution conceivable? Yes X No
Explain: Solid H2 has been proposed for 10 year life in space, if properly insulated

5. Are there significant safety issues that the engineering must address? Yes X No
What are the hazards? Pressure and temperature instability, must be outside cabin. 

6. How does it compare with other ideas in the category?
Advantages: Best shielding per unit mass, Good dual uses
Disadvantages: Low latent heat (liquid?)
Other Comments:
Recommend future research for the radiation shielding program?  Yes No X
If yes, briefly describe next phase of investigation: Best shielding per unit mass, no particular 
advantages seen for solid vs. liquid; solid is slightly less dense, is not rigid, expensive to make.  
Large volumes of liquid hydrogen are utilized on mission

Submitted by: John Gregory
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ASSESSMENT OF ADVANCED CONCEPT

Category: Novel Materials Concept: Metal Hydrides

1. Does it obey the laws of Physics?   Yes X No

2. Could it
  a. Reduce the GCR flux significantly?  Yes X No 
  b. Reduce the GCR dose significantly?  Yes X No

3. Does it have dual use?    Yes X No 
Describe other use: Use in fuel cells.

4. Is a practical implementation and engineering solution conceivable? Yes X No
Explain: LiH is stable, castable in slabs or complex forms, can be pressed.

5. Are there significant safety issues that the engineering must address?  Yes X No
What are the hazards? Flammable, react with water, water vapor

6. How does it compare with other ideas in the category?
Advantages: Good shield per unit mass, good neutron absorber; LiH almost competitive with 
polyethylene as shield.
Disadvantages: Reactive, poor mechanical properties
Other Comments: Several hydrides are candidates for study: LiH, MgH2, LiBH4, TeH2  
Recommend future research for the radiation shielding program?  Yes X  No
If yes, briefly describe next phase of investigation: Evaluation of all candidates with transport codes 
for relative shielding effectiveness, encapsulation and hazard abatement.

Submitted by: John Gregory
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ASSESSMENT OF ADVANCED CONCEPT

Category: Novel Materials Concept: Nano-carbons

1. Does it obey the laws of physics?   Yes X No

2. Could it
  a. Reduce the GCR flux significantly?  Yes X No 
  b. Reduce the GCR dose significantly?  Yes X No

3. Does it have dual use?    Yes X No
Describe other use: Potential use in composite structures; hydrogen storage; useful in fuel cells

4. Is a practical implementation and engineering solution conceivable?  Yes X No
Explain: Composite materials for structural applications

5. Are there significant safety issues that the engineering must address? Yes  No X
What are the hazards? Flammable

6. How does it compare with other ideas in the category?
Advantages: Low Z, good H2 retention at room temperature, thermally and electrically conductive
Disadvantages: 6% by wt H storage confirmed. Reports of higher values. 
Other Comments: Expensive at present.
Recommend future research for the radiation shielding program?  Yes X No
If Yes, briefly describe next phase of investigation: Claims in literature for special forms of nano-
carbon indicate much higher H2 retention is possible. Evaluate relative shielding effectiveness with 
various assumed H content.

Submitted by: John Gregory



59

ASSESSMENT OF ADVANCED CONCEPT

Category: Novel Materials Concept: Palladium/Silver

1. Does it obey the laws of physics?   Yes X No

2. Could it
  a. Reduce the GCR flux significantly?  Yes X No 
  b. Reduce the GCR dose significantly?  Yes X No

3. Does it have dual use?    Yes X No
Describe other use: Mechanically strong, electrically conductive, corrosion resistant

4. Is a practical implementation and engineering solution conceivable?  Yes X  No
Explain: Easy to fabricate, easy to charge with H

5. Are there significant safety issues that the engineering must address?  Yes No X 
What are the hazards?

6. How does it compare with other ideas in the category?
Advantages: High hydrogen content.
Disadvantages: High atomic mass elements, probable high neutron production, expensive
Other Comments: Conductive, corrosion resistant, unreactive
Recommend future research for the radiation shielding program?  Yes X  No
If yes, briefly describe next phase of investigation: Uncertainty about maximum hydrogen absorption. 
Potential for higher hydrogen atom ratio than any other known material, which should be investigated.

Submitted by: John Gregory
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7. Irradiation of the Moon by Galactic Cosmic Rays and Other Particles (with Maurice M. Shaprio), Proc. of Lunar 

Bases and Space Activities in the 21st Century, October 29-31, 1984.
8.  Radiation Transport of Cosmic Ray Nuclei in Lunar Material and Radiation Doses (with R. Silberberg, C.H. Tsao, 

and John R. Letaw), Proc. of Lunar Bases and Space Activities in the 21st Century, October 29-31, 1984.
9. LET Spectra in Low Earth Orbit, (with B. Stiller and A. J. Tylka), IEEE Trans. on Nucl. Sci., Vol. 33, 1386-

9,1986.
10.  “Toward a Descriptive Model of Solar Particles in the Heliosphere”, (with M. A. Shea, D. F. Smart, D. Chenette, 

J. Feynman, C. Hamilton, G. Heckman, A. Konradi, M. A. Lee, D. S. Nachtwey, and E. C. Roleof), Proc. of the 
Conference on the Interplanetary Particle Environment, JPL Pub. 88-28,3-13, 1988

11.  “Toward a Descriptive Model of Galactic Cosmic Rays in the Heliosphere”, (with R. A. Mewaldt,  
A. C. Cummings, P. Evenson, W. Fillius, J.R. Jokipii, R.B. McKibben, and P. A. Robinson), Proc. of the Conference 
on the Interplanetary Particle Environment, JPL Pub. 88-28, 14-34, 1988

12. “Current Models of the Intensely Ionizing Particle Environment in Space”, Proc. of the Conference on the 
Interplanetary Particle Environment, JPL Pub. 88-28, 49-56, 1988

13.  The Absolute Spectra of Galactic Cosmic Rays at Solar Minimum and Their Implications for Manned Spaceflight, 
(with G. D. Badhwar, R. A. Mewaldt, B. Mitra, P. M. O’Neal, J. F. Ormes, P. Stemwedel and R. E. Streitmatter), 
22nd Intl. Cosmic Ray Conference (Dublin), 1991.

14. Report on Constraints on Space Exploration (with no co-authors) Aerospace and Environmental Medicine,  
Vol. 27, No. 4, P. 7-10,1993.

15. Cosmic Radiation: Constraints on Space Exploration, Nuclear Tracks and Radiation Measurements, Vol. 20,397-
401 1991.

16.  A Model of the Primary Cosmic Ray Spectra (with J. Lee) Radiation Measurements, Vol. 26, 467-470, 1996.
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Education:
North Carolina State University BS, Aerospace Engineering 1964
University of Tennessee Space Institute MS, Aerospace Engineering 1967
Georgia Institute of Technology PhD, Aerospace Engineering 1975

Dr. Cassanova is the Director of the NASA Institute for Advanced Concepts (NIAC) in Atlanta, Georgia. 
The NIAC is focused on the development of revolutionary, advanced systems and architectures in the 
fields of aeronautics and space. The NIAC is an independent institute sponsored by NASA. As of May 
2000, the NIAC has sponsored the development of 46 revolutionary advanced concepts that could have 
significant impact on future aeronautics and space systems.

Prior to becoming the Director of NIAC, Dr. Cassanova was Director of the Aerospace and 
Transportation Laboratory in the Georgia Tech Research Institute (GTRI). The lab performed research 
in aeronautics, ground transportation, acoustics, materials and structures for the Department of Defense 
agencies, National Aeronautics and Space Administration, Federal Aviation Administration, Federal 
Highway Administration, Georgia Department of Transportation, Department of Energy and private 
industry.

While in GTRI and in the School of Aerospace Engineering at Georgia Tech, he performed research 
in biofluid mechanics, solar thermal energy, acoustics, combustion and rarefied gas dynamics. His 
career also includes research in rocket plume testing and high altitude hypersonic flight at the Arnold 
Engineering Development Center in Tullahoma, Tennessee.
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Professor and Chairman, Department of Mechanical Engineering and Materials Science, Duke 
University, Durham, North Carolina 27708-0300 
Founding Director: Master of Engineering Management degree program

Professor Cocks received his doctoral degree from MIT in 1965, where he also did his undergraduate 
work, and was a Fulbright Fellow at Imperial College of Science and Technology, London, in 1966. 
He is the holder of a NASA Technical Achievement Award for his Development of single crystal beta-
alumina membranes for sodium-sulfur battery systems, given in 1974, and launched a successful GAS 
payload aboard the Shuttle Columbia in 1991. He is a registered United States Patent Agent, holding 
more than 20 patents. Of his 125 technical papers, some of those most relevant to NASA and the current 
project are listed below:

“A High Resolution Solar Telescope using Dark-lens Diffractive Optics” (with S. A. Watkins, M. J. Walker, 
T. A. Lutz and J. C. Sussingham), Solar Physics 198 (2), 211-222 (2001).
“A Dark Lens Diffracting Telescope: Novel Concept for Direct Extrasolar Planet Imaging, (with E. E. 

Cocks), Optical Engineering, 36, (1997), pp. 2921-2924.
“Forty Years of Development of Active Systems for Radiation Protection of Spacecraft” (with J. Sussingham 
and S. Watkins), The Journal of the Astronautical Sciences, 47, (1999), pp. 165-175.
“Applications for Deployed High Temperature Superconducting Coils in Spacecraft Engineering: A Review 
and Analysis” (with J. C. Cocks, S. A. Watkins and C. Sussingham), Journal of The British Interplanetary 
Society 50, (1997), pp. 479-484.
“Extrasolar Planetary Detection Via Stellar Occultation” (with J. E. Bischoff, S. A. Watkins, K. Higuchi 
and P. Y. Bely), in Space Telescopes and Instruments, Proceedings of the Society for Photo-optical and 
Instrument Engineers, 2807, (1996), pp. 34-86.
“A Novel Variable-Gravity Simulation Method: Potential for Astronaut Training,” (with J. Sussingham), 
Aviation Space, and Environmental Medicine 66 (11), (1995) 1094-1096.
“A Deployed High Temperature Superconducting Coil (DHTSC) Magnetic Shield,” with E. Hilinski,  

J. of Spacecraft and Rockets, 31 (1994) 342-344.
“A Deployable High Temperature Superconducting Coil (DHTSC): A Novel Concept for Producing 

Magnetic Shields Against both Solar Flare and Galactic Radiation during Manned Interplanetary 
Missions,” J. of the British Interplanetary Society, 44 (3), (1991), pp. 99-102.

“Fusing Lunar Materials with Microwave Energy. Part II: Melting of a Simulated Glassy Apollo II Soil,”  
in Lunar and Planetary Science, Vol. XVII, The Lunar and Planetary Institute, Houston, pp. 911-912 (1985), 
with D.T. Vaniman, T.T. Meek, and A.D. Blake.
“Microwave Processing of Lunar Materials,” in Lunar Bases and Space Activities of the 21st Century,  

ed. by W.W.Mendell, Lunar and Planetary Institute, 1985, 479-486 (with T.T. Meek, D.T. Vaniman,  
and R.A. Wright).

“Ultralight Reactive Metal Foams in Space: A Novel Concept,” J. of Spacecraft and Rockets 21(5) 
(1984) 510-512.
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CURRENT ADDRESS: Space Science Department/SD50, Marshall Space Flight Center, AL, 35812

EDUCATION: B.S., Drexel University, (1967), M.S., University of Arizona, (1978), 
 Ph.D., University of Alabama in Huntsville, (1983).

POSITIONS: Astrophysicist from 1967 to the present at Marshall Space Flight Center

MEMBERSHIPS: A member of the American Physical Society, Sigma Pi Sigma, and the 
American Association for the Advancement of Science.

PROFESSIONAL EXPERIENCE:

For the past 28 years, Dr. Derrickson has contributed to the design and development of cosmic ray 
detectors as part of the MSFC’s Cosmic Ray Research Program. Recently the emphasis has been on 
the measurement of very high energy cosmic rays above 1 TeV/nucleon. The highlights include: the 
direct measurement of the cosmic ray hydrogen and helium spectra at energies from 2 to 800 TeV 
; the further development of the Bristol University Gas Spectrometer 4 (BUGS-4) detector system 
designed to measure the high energy spectra of the heavy cosmic rays; and the design of a detector 
system that will use the production of the direct electron-positron pairs by relativistic heavy ions in 
high-Z targets to measure the energy of the cosmic ray elements silicon to iron in the “knee” region 
of the “all-particle” energy spectrum.

RECENT SELECTED PUBLICATIONS:

“Cosmic Ray Proton and Helium Spectra - Results from the JACEE Experiment,” Ap. J., 502, 
278-283, 1998.

“Elemental Abundance of High Energy Cosmic Rays”, Nuclear Physics B, 60B, 83-92, 1998.

“A Measurement of the Absolute Energy Spectra of Galactic Cosmic Rays During the 1976-77 
Solar Minimum”, Nucl. Tracks Radiat. Meas., 20, No. 3, 415-421, 1992. (Ph.D. thesis work)

“Ionizing Radiation Exposure of LDEF* (Pre - Recovery Estimates)”, Nucl. Tracks Radiat. 
Meas., 20, No. 1, 75-100, 1992.

“An Application of the Direct Coulomb Electron Pair Production Process to the Energy 
Measurement of the ‘VH-Group’ in the ‘Knee’ Region of the ‘All Particle’ Energy Spectrum”, 
26th ICRC, 5, 65, Salt Lake City, 1999.
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Space Science Department, SD50, 
NASA Marshall Space Flight Center, 

Huntsville, Alabama 35812.

Research Experience:

Dr. Gallagher received the B.S. degree from Iowa State University in 1974, the M.S. degree from the 
University of Iowa in 1978, and the Ph.D. degree from the University of Iowa in 1982.

Following graduate school he joined the Physics faculty at the University of Alabama in Huntsville 
where he stayed for two years until leaving the position of Assistant Research Professor in 1984. Since 
1984 he has worked in space science for NASA Marshall Space Flight Center. He has worked in a 
variety of areas including the study of Auroral Kilometric Radiation, Doppler shifted short wavelength 
ion acoustic waves in the magnetosheath, terrestrial micropulsations, wave-packet bursts upstream of the 
Jovian bow shock, and dust impacts during transit of the Saturnian ring plane. He has become heavily 
involved in studying the effects of heavy ions on wave-particle plasma processes and with the empirical 
modeling of magnetospheric plasmas. In addition, he served as the Study Scientist for the Inner 
Magnetosphere Imager mission and is a co-investigator on the resulting IMAGE Mission. Most recent 
work has involved the global, empirical modeling of inner magnetospheric plasmas. Accomplishments 
include an empirical derivation of plasmaspheric densities as a function of the level of geomagnetic 
activity in the inner magnetosphere and the on-going development of a new time-dependent model of the 
plasmasphere, which includes the influences of the ring current and superthermal electron populations.

Selected Publications:

Gallagher, D. L., Short-wavelength electrostatic waves in the Earth’s magnetosheath, J. Geophys. Res., 
90, 1435-1448, 1985.

Gallagher, D. L., J. D. Menietti, J. L. Burch, A. M. Persoon, J. H. Waite, Jr., and C. R. Chappell, Evidence 
of high densities and ion outflows in the polar cap during the recovery phase, J. Geophys. Res., 91, 
3321-3327, 1986.

Gallagher, D. L., P. D. Craven, R.H. Comfort, and T.E. Moore, On the azimuthal variation of the 
equatorial plasmapause, J. Geophys. Res., 100, 23,597-23,605, 1995. Gallagher, D. L., P.D. 
Craven, and R.H. Comfort, A simple model of magnetospheric trough total density, J. Geophys. 
Res., 103, 9293-9297, 1998.

Gallagher, D. L., P.D. Craven, and R.H. Comfort, Global Core Plasma Model, J. Geophys. Res., 105, 
18819-18833, 2000.
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Chemistry Department 
Huntsville, Alabama 35899 

(256) 890-6028 
jcgregory@matsci.uah.edu

Current Position: Professor of Chemistry and Materials Science; Director, Alabama Space Grant 
Consortium; Director, Alabama NASA EPSCoR Program

Educational Background: BSc, Physical Chemistry, 1962, Imperial College, University of London, 
England (Awarded with First Class Honors); Associate of the Royal College of Science, London, 
England, 1962; PhD, Surface Physical Chemistry, 1967, Imperial College, London, England; 
Diploma of Imperial College, 1967, Imperial College, London, England

Relevant Publications
1.  Elemental Abundance of High Energy Cosmic Rays, Y. Takahashi, K. Asakimori, T.H. Burnett,  

M.L. Cherry, K. Chevli, M.J. Christl, S. Dake, J.H. Derrickson, W.F. Fountain, M. Fuki, J.C. Gregory, 
R. Holynski, J. Iwai, A. Iyono, W.V. Jones, A. Jurak, M. Kobayashi, J.J. Lord, O. Miyamura, H. Oda, 
T. Ogata, E.D. Olson, T.A. Parnell, F.E. Roberts, T. Shiina, S.C. Strausz, Y. Takahashi, T. Tominaga, 
S. Toyoda, J.W. Watts, J.P. Wefel, B. Wilczynski, R.J. Wilkes, W. Wolter, B. Wosiek, H. Yokomi,  
E.L. Zager, Nuclear Physics B (Proc. Suppl.) 60B, 83-92,1998.

2.  Design and Flight Performance of the Cosmic Ray Detector BUGS-4, A.E. Smith, J.J. Petruzzo 
III, J.C. Gregory, C. Thoburn, R.W. Austin, J.H. Derrickson, T.A. Parnell, M.R.W. Masheder,  
P.H. Fowler, Nucl. Instrum. Meth. Phys. Res., 402(1), 104-122, 1998.

3.  Atmospheric Radioactive Isotopes at Orbital Altitudes, J.C. Gregory, Radiation Measurements, 
26(6), 841850, 1996.

4.  A Measurement of the Absolute Energy Spectra of Galactic Cosmic Rays During the 1976-77 Solar 
Minimum, J.H. Derrickson, T.A. Parnell, R.W. Austin, W.J. Selig and J.C. Gregory, Nuclear Tracks 
and Radiation Measurements, Including Thermoluminescence: International Journal of Radiation 
Applications and Instrumentation, Part D, 20(3), July 1992.

5. Energy Spectra of Cosmic Rays above 1 TeV per Nucleon, T.H. Burnett, S. Dake, J.H. Derrickson, 
W.F. Fountain, M. Fuki, J.C. Gregory, T. Hayashi, R. Holynski, J. Iwai, W.V.Jones, A. Jurak, J.J. 
Lord, O. Miyamura, H. Oda, T. Ogata, A. Olsezski, T.A. Parnell, F.E. Roberts, S. Strausz, T.Tabuki, 
Y. Takahashi T.Tominaga, J.W. Watts, J.P. Wefel, B. Wilczynska, R.J. Wilkes, W. Wolter, and B. 
Wosiek, Astrophysical Journal 349, L25, 1990.

6.  Reaction of 5eV Oxygen Atoms with Polymeric and Carbon Surfaces in Earth Orbit, J.C. Gregory, 
and P.N. Peters, Polymer Preprints, 28(2), 459, American Chemical Society, 1987.

7. Measurements of Background Gamma-Radiation on Spacelab 2, G.J. Fishman, J.C. Gregory 
and W.S. Paciesas, Advances in Space Research 7, 231, 1987.

8.  The Measured Radiation Environment within Spacelabs 1 and 2 and Comparison with Predictions, 
T.A. Parnell, J.W.Watts, G.J. Fishman, E.V. Benson, A.L. Frank and J.C. Gregory, Advances  
in Space Research 7, 1098, 1987.

9. Cosmic Ray Results from the JACEE Experiment, T.H. Burnett, J.C. Gregory, T. Hayashi,  
Y. Takahashi, et. al. (The JACEE Collaboration) Nuclear Physics A461, 263, 1987.
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Richard N. Grugel - Biographic Sketch

Richard N. Grugel earned a B.A. in Geological Sciences (1976) and an M.S. in Metallurgical 
Engineering (1980), both from the University of Wisconsin-Milwaukee. In 1983 he completed a thesis 
entitled “Solidification, Phase Equilibria, and Structural Transitions in Systems Containing a Liquid 
Miscibility Gap” and was awarded a Ph.D. in Metallurgical Engineering from Michigan Technological 
University. This was followed by post-doctoral positions at the Swiss Federal Institute of Technology 
in Lausanne and at Northwestern Polytechnical University in Xian, People’s Republic of China. In 
1987 he accepted a position in Vanderbilt University’s “Center for the Space Processing of Engineering 
Materials” as a Research Assistant Professor and in 1990 joined Vanderbilt’s “Center for Microgravity 
Research and Applications”. In 1992 he was promoted to Research Associate Professor. In July 1994 
Grugel accepted a Staff Scientist position with the Universities Space Research Association and 
conducted research as an on-site contractor in the Space Sciences Laboratory of the Marshall Space 
Flight Center. In August 1999 Grugel accepted a Scientist position with Marshall Space Flight Center, 
Science Directorate.

Grugel has some 20 years experience in solidification processing, particularly in utilizing controlled di-
rectional solidification techniques. He has authored or co-authored studies on monotectic, eutectic, den-
dritic, and composite solidification, both in metal alloys and in transparent, analogous systems. His work 
since 1987 has given him considerable appreciation of gravity, or lack of, as a solidification-processing 
variable.

Selected Publications
1. R.N. Grugel and A. Hellawell: Alloy Solidification in Systems Containing a Liquid Miscibility Gap, 

Metallurgical Transactions A., 1981, vol. 12A, p. 669.
2. R.N. Grugel and W.Kurz: Growth of Interdendritic Eutectic in Directionally Solidified Al-Si Alloys, 

Metallurgical Transactions A, 1987, vol. 18A, p. 1137-1142.
3. R.N. Grugel and Y. Zhou: Primary Dendrite Arm Spacing and the Effect of Off-Axis Heat Flow, 

Metallurgical Transactions A, 1989, Vol. 20 A, pp. 969-973.
4. R.N. Grugel: Mixed Gravity Mode Growth During Directional Dendritic Solidification Aboard the 

KC-135, Metallurgical Transactions A, 1989, vol. 20A, pp. 1284-1286.
5. R.N. Grugel: Composite Growth in Hypermonotectic Alloys, Metallurgical Transactions B, 1991, 

vol. 22B, pp.339-348.
6. R.N. Grugel: “Evaluation of Primary Dendrite Trunk Diameters in Directionally Solidified Al-Si 

Alloys.” Materials Characterization, 1992, vol.28, pp. 213-219.
7. R.N. Grugel, Shinwoo Kim, Tracey Woodward, and T.G. Wang: “The Effect of Crucible 

Rotation on Microstructural Uniformity during Horizontal Directional Solidification.” Journal 
of Crystal Growth,1992, vol. 121, pp. 599-607.

8. Fay Hua and R.N. Grugel: “Microstructural Development in Undercooled Lead-Tin Eutectic 
Alloys.” Metallurgical and Materials Transactions, 1995, vol. 26A, pp. 2699-2706.

9. R.N. Grugel and L.N. Brush: “Observation of Macrosegregation in Directionally Solidified 
Dendritic Alloys”, Journal of Metals, 1997, vol. 49, no. 3, pp. 26-30, Invited.

10. R.N. Grugel: “Uniform Composite in a Hypermonotectic Alloy System and Method for 
Producing the Same,” U.S. Patent No. 5,246,508, September 1993.
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EDUCATION:
Ph.D., Astrophysics, University of Colorado, 1979. 
M.S., Physics, University of Colorado, 1975.
B.S., Astronomy, University of Massachusetts, 1973.

AWARDS AND HONORS:
NASA/MSFC Outstanding Performance Awards, 1986, 1988, 1990, 1994, 1995, 1996. NASA/MSFC 
Director’s Commendation 2000
NASA Certificates of Appreciation, 1986, 1988, 1990, 1991, 1992, 1995, 1998. 
NASA Group Achievement Awards, 1992, 1996, 1997. 
NSF Fellowships, Honorable Mention, 1973.
Massachusetts Senatorial Honor Scholarships, 1969, 1970, 1971, 1972. 
Phi Beta Kappa Membership, 1973.
University of Massachusetts Freshman Physics Award, 1970.

PROFESSIONAL SOCIETIES:
American Astronomical Society (1976-Present)

Solar Physics Division, AAS (1987-Present) 
Vice-Chairperson (1991-1992) 
SPD Committee (1992-1994) 
Secretary (1988-1991) 
Media Liaison (1990-1996) 
Nominating Committee Chair (1992)

Division for Planetary Sciences, AAS (1981-present)
American Geophysical Union (1997-Present)
International Astronomical Union (1984-Present)
Sigma Xi (1984-Present)

AUTHOR: over 100 articles in professional journals and popular magazines. Recent papers include:
Hathaway, D. H., Beck, J. G., Bogart, R. S., Bachmann, K. T., Khatri, G., Pettito, J. M., Han, S., and Raymond,  

J.: 2000, “The Photospheric Convection Spectrum,” Solar Phys. 193, 299.
Hathaway, D. H., Wilson, R. M., and Reichmann, E. J.: 1999, “A synthesis of solar cycle prediction techniques,”  

J. Geophys. Res. 104, 22,375-22,388.
Hathaway, D., Gilman, P., Harvey, J., Hill, F., Howard, R., Jones, H., Kasher, J., Leibacher, J., Pintar, J., and Simon, 

G.: 1996. “GONG Observations of Solar Surface Flows,” Science 272, 1306-1309.
Hathaway, D. H.: 1996, “Doppler Measurements of the Sun’s Meridional Flow,” Astrophys. J. 460, 1027-1033. 

Hathaway, D. H.: 1994, “Producing The Solar Dynamo,” EOS, Trans. A. G. U. 75, 548.
Hathaway, D. H., Wilson, R. M., and Reichmann, E. J.: 1994, “The Shape of the Sunspot Cycle,” Solar Phys. 151, 

177.

INVENTOR: VISAR - Video Image Stabilization And Registration with Paul Meyer. 

CURRENT POSITION:
Group Leader: Solar Physics Group, Space Science Department, Science Directorate, National Aeronautics and Space 
Administration, Marshall Space Flight Center, Marshall Space Flight Center, Alabama 35812. Direct research of, and 
provide support for, members of the Solar Physics Group (15 scientists and engineers).
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Senior Scientist 

Basic Sciences Division 
National Renewable Energy Laboratory 

Golden CO, 80401

Phone: 303-384-6641 
Fax: 303-384-6490 

Email: MikeH@NREL.GOV

October 11, 2000

Michael J. Heben graduated from John Carroll University in 1984 with a Bachelors Degree in Physics, from Stan-
ford University in 1986 with a Masters Degree in Materials Science and Engineering, and from California Insti-
tute of Technology in 1990 with a Doctorate in Chemistry. Dr. Heben performed research in the Photochemistry 
Group at the Standard Oil Company of Ohio, and with the Research Fabrication Group at the Xerox Palo Alto 
Research Center prior to seeking graduate degrees. His doctoral thesis developed scanning tunneling microscope 
techniques for in situ investigations of electrode/electrolyte interfaces. Dr. Heben was awarded a National Re-
search Council Postdoctoral Fellowship to perform work at the Naval Research Laboratory, but instead opted to 
join NREL in 1990 as a postdoctoral associate with A.J. Nozik. With Nozik, he performed experiments to probe 
hot-electron dynamics in low-dimensional semiconductor structures. He became a Staff Member at NREL in 1992 
and developed plasma-based oxidation methods for producing stable light-emitting porous silicon. He was pro-
moted to Senior Scientist in 1996 due to his work on hydrogen storage materials. He is an expert in the applica-
tion of scanning probe microscopies, synthetic methods for producing layered nanostructured materials, perform-
ing electrical transport measurements, and in the study of molecular diffusion and adsorption in environments 
with reduced dimensionality. He pioneered the use of carbon single wall nanotubes for use in hydrogen storage 
applications and has focused on the synthesis of carbon nanotube materials using a variety of methods. His 
group’s work on hydrogen storage in carbon nanotubes was named by Discover Magazine as one of the 100 most 
important scientific discoveries of 1997. He is an International Energy Agency expert for hydrogen storage in IEA 
Annex 12. He currently leads a group of six that is active in research topics such as hydrogen storage, synthesis 
and purification of carbon nanotubes, lithium battery, ultracapacitor, and fuel cell materials, and natural gas purifi-
cation membranes. The group is presently funded by various sources including DOE/OER, DOE/EE, Honda R&D 
Americas, and NREL’s FIRST Program. Heben has co-authored approximately 45 peer-reviewed publications.

Some Publications of Relevance:
1. A.C. Dillon, T. Gennett, K.M. Kones, J.L. Alleman, P.A. Parilla, and M.J. Heben, “A simple and complete 

purification of single-walled carbon nanotube materials”, Adv. Mater., 11(16), 1354-1358,1999.
2. A.C. Dillon, P.A. Parilla, J.L. Alleman, J.D. Perkins, and M.J. Heben, “Controlling single-wall nanotube 

diameters with variation in laser pulse power”, Chem. Phys. Lett., 316, 13-18, 2000.
3.   T. Gennett, A.C. Dillon, J.L. Alleman, K.M. Jones, F.S. Hasoon, and M. J. Heben, “Formation of single-wall 

carbon nanotube superbundles”, Chemistry of Materials, 2000.
4. A.C. Dillon, K.M. Jones, T.A. Bekkedahl, C.H. Kiang, D.S. Bethune, and M.J. Heben, “Storage Of Hydrogen 

In Single-Walled Carbon Nanotubes”, Nature 386,377-279 (1997).
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Exploration Office 
NASA Lyndon B. Johnson Space Center 

Houston, TX 77058

Phone: 281-483-4645 
Fax: 281-244-7478 

Email: kent.joosten@jsc.nasa.gov

October 12, 2000

Kent Joosten has worked at the NASA Johnson Space Center in Houston, Texas for the past 20 years 
after receiving his Masters Degree in Aerospace Engineering from Iowa State University. He began 
work as a Space Shuttle flight designer and mission analyst, and in addition to helping develop 
modifications to the Shuttle Orbiter’s guidance and navigation flight design characteristics, he served 
in the Mission Control Center for 28 Space Shuttle missions. Following the Challenger accident, Mr. 
Joosten led a team dedicated to the development of astronaut procedures and Mission Control computer 
software to enhance the Shuttle’s contingency flight characteristics.

Since 1990, Mr. Joosten has developed operational profiles and flight test plans for the X-38 technology 
demonstration vehicle, and has participated in developing broad-based strategies for the future human 
exploration of the moon and Mars. In his current role as the Chief Engineer in NASA’s Exploration 
Office, he is charged with coordinating technology plans, demonstration projects, and robotic mission 
payloads which will prepare the way for human missions of exploration to other planets in our solar 
system.

Some Publications of Relevance:
“Continuing Development of the NASA Human Mars Mission Design”, B . Kent Joosten, Jeff George, 

Gerald Condon and Stephen J. Hoffman, The Sixth International Conference and Exposition on 
Engineering, Construction, and Operations in Space, Albuquerque, NM, April 26-30, 1998.

“Preparing for Human Exploration”, Bret G. Drake and B. Kent Joosten, The Sixth International 
Conference and Exposition on Engineering, Construction, and Operations in Space, Albuquerque, 
NM, April 26-30, 1998.

“Early Lunar Resource Utilization: A Key to Human Exploration”, B. Kent Joosten and Lisa A. Guerra, 
AIAA Space Programs, and Technologies Conference and Exhibit, Huntsville, AL, September 21-23, 
1993. (AIAA 93-4784)

“Mission Design Strategies for the Human Exploration of Mars”, B.K. Joosten, B.G. Drake, D.B. 
Weaver, J.K. Soldner, 42nd Annual Astronautical Conference, Montreal, Canada, Oct 5-11, 1991. 
(IAF 91-336)

“Mars Trajectory Options for the Space Exploration Initiative”, J.K. Soldner, B.K. Joosten, AAS/AIAA 
Astrodynamics Conference, Durango, CO, Aug. 19-22, 1991. (AAS 91-438)
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William H. Kinard 
Senior Research Scientist 

NASA / Langley Research Center

Since entering on duty with the NACA at the Langley Research Center in 1955, his career with the 
NACA and later with NASA has focused on research to define the meteoroid and the manmade debris 
environments in space and the effects these environments can have on operational spacecraft.

Dr. Kinard conceived and was Principle Investigator for the Interplanetary Micrometeoroid 
Experiments on the Pioneer 10 and 11 spacecraft that first measured the populations of micrometeoroids 
in the asteroid belt and near Jupiter and Saturn and that also first established that micrometeoroids in 
the asteroid belt and near the outer planets would present no significant hazard to follow-on spacecraft 
exploring these and the other outer planets.

He conceived and was Principle Investigator for the Meteoroid Technology Satellite, which first 
demonstrated in space that the “Meteor Bumper Shield” is an effective concept to shield against 
impacting meteoroids and orbiting debris. Bumpers are now used to shield most large spacecraft 
including the International Space Station.

He also conceived, managed the design and development, and later was Chief Scientist for the Long 
Duration Exposure Facility (LDEF) which obtained a treasure trove of information on the environments 
(including natural meteoroid and man-made orbiting debris) in near Earth space and the effects of these 
environments on spacecraft. The LDEF data set is now regarded as the “benchmark” for environmental 
effects on spacecraft in LEO.

Dr. Kinard has written more than 200 technical publications; he has 8 Patents for space related 
inventions; numerous awards including the NASA Medal for Exceptional Scientific Achievement and 
an Honorary Doctors degree from Clemson University. He is currently working on space environmental 
effects experiments to be performed on the International Space Station.
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Brief Resume - Stephen H. Knowles

Knowles received his B.A. from Amherst College in June 1961, and his Ph.D from Yale 
University in June 1968, with specialization in celestial mechanics.

He was employed by the Naval Research laboratory from 1961 to 1986 as a research scientist in 
the Radio Astronomy Branch of the Space Science Division. His work there included pioneering 
contributions to radar astronomy, spectral line radio astronomy and very long baseline interferometry. 
Notable achievements included his thesis, “A Determination of the Astronomical Unit from Hydrogen 
Line Radial Velocity Measurements”, which resolved a discrepancy in measurements of the size of the 
Earth’s orbit, and participation with Charles Townes’ group in the discovery of water vapor masers. 
He was awarded a two-year sabbatical fellowship at the C.S.I.R.O. in Australia, where he led the first 
investigations of southern hemisphere water vapor masers. He also published in the field of ionospheric 
research. Knowles was a three time recipient of NRL’s Research Publication Award.

From 1986 to 1996 Knowles was Technical Director of the Naval Space Surveillance Center, where he 
led in the application of space environmental knowledge to operational orbit determination. He served 
as the navy’s primary expert in the fields of space surveillance, extraterrestrial radar, orbital mechanics 
and the space environment, including space debris. He was awarded the Navy’s Meritorious Civilian 
Service Medal.

After retiring from Federal service, Knowles has been employed by the Raytheon Corporation  
as a Chief Scientist with full-time duty at the Naval Research Laboratory.

Knowles has published over 80 papers in refereed journals. Recent examples of his work include:

“A search for small comets with the Naval Space Command radar”, S. Knowles, R.R. Meier,  
A.S. Gustafson, and F.J. Giovane, J.G.R. 104, A6, pp. 12637-12643, June 1, 1999 and 
participation in the National Research Council’s Committee on Space Debris, which published 
the report

“Orbital Debris - A Technical Assessment”, National Academy Press, Wash., DC 1995 - Knowles 
was a member of the National Academy of Sciences committee that prepared this report.
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Larry Kos has been the Lead Engineer on the Human Mars Mission Study for the Advanced Concepts 
Department (ACD) in the Space Transportation Directorate (previously the Preliminary Design Office 
in the Program Development Directorate) since 1996. He is a co-lead on the intercenter Trajectory 
Team, which was put in place to facilitate all efforts in the REDS arena. He was also the technical 
point of contact for the intercenter Integrated Human Mars Mission Study activity. Current assignments 
include functioning as the ACD Technical Lead for 3rd & 4th Generation In-space Transportation and 
supporting all Decadal Planning activities. This DPT support includes membership and involvement 
in the Transportation Systems Team (1- 2 individuals from each NASA center involved in in-space 
transportation), the Architectures Team (focused activity on leading architectures), and the Propellant 
Aggregation Team. The support for each of these teams required running varied mission, trajectory, 
sizing, and orbital analyses as well as daily intercenter coordination and interfacing.

He has worked in the mission analysis and orbit mechanics areas since 1991, selecting orbits and 
modeling missions for projects including the Magnetosphere Imager (Ml), Laser Atmospheric Wind 
Sounder (LAWS), Advanced X-ray Astrophysics Facility - Spectrometer (AXAF-S), Space Station 
Redesign, Cargo Transfer and Return Vehicle (CTRV), QuickSat, Quick LAWS, and the Autonomous 
Earth Orbiting LIDAR Utility Sensor (AEOLUS) studies. He also worked the Solar Thermal Upper 
Stage (STUS) and was co-lead engineer for that study. Recent studies include the Back To The Moon 
study, Beyond LEO Advanced Space Transportation (BLAST) study, and again was co-lead for the 
Human Lunar Return (HLR) Study.

His professional background also includes over 18 years of work in the field of dynamics, with specific 
applications in the areas of astrodynamics (orbital mechanics, mission design and trajectory / orbit 
selection, mission modeling, etc.) and structural dynamics (analyses and modeling). He began his 
NASA career in 1982 in the Systems Dynamics Laboratory, Structural Dynamics Division.

He obtained a B.S. in Aerospace Engineering from University of Colorado in 1982, and more recently, 
an M.A.E. in Aerospace Engineering from Auburn University in 1996. He has completed all coursework 
and exams for the doctorate in aerospace engineering (at Auburn also), and has commenced and is 
continuing to work on the research for the dissertation. The topic is in the field of advanced mission 
design and trajectory selection.
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