Mapping Mercury: Global Imaging Strategy and Products from the MESSENGER Mission

Nancy L. Chabot, Brett W. Denevi, Scott L. Murchie, Christopher D. Hash, Carolyn M. Ernst, David T. Blewett, Hari Nair, Nori R. Laslo

Johns Hopkins University Applied Physics Laboratory

Sean C. Solomon

Lamont-Doherty Earth Observatory, Columbia University

Department of Terrestrial Magnetism, Carnegie Institution of Washington

&

The MESSENGER Team
What is the geologic history of Mercury?

MESSENGER provided the exciting opportunity to undertake the first global imaging campaigns of Mercury.
MESSENGER’s Mercury Dual Imaging System (MDIS)

- Narrow Angle Camera (NAC)
- Wide Angle Camera (WAC) with 11 narrow-band filters

MESSENGER’s Primary Mission

- One Earth year
- Total # of images: 88,746
 - A key constraint: the data volume allocation

MDIS Primary Mission Priorities

- Image the surface completely, at moderate incidence angles to gain both morphology and reflectance information
- Stereo imaging, for a global digital elevation model (DEM)
- Acquire a global multispectral dataset in 8 MDIS filters

MESSENGER

MERCURY Surface, Space Environment, GEochemistry, and Ranging
MESSENGER’s Extended Missions

• 3+ years, for a total of just over 4 years in Mercury orbit
• A key constraint for MDIS was always the data volume

MDIS Extended Mission Campaigns

• Imaging under a range of illumination conditions
 • High and low incidence angles
 • East and west directions
• Higher spatial resolution multispectral datasets
April 30, 2015: “set to end with dramatic crash”, “smashing into planet”, “crash course with history”, “explosive demise”, “destroys itself”, “death plunge”, “fatal dive”, “NASA is going to purposely crash a $446 million spacecraft into Mercury at breakneck speeds”, “doomed NASA spacecraft”...

In total: 277,928 orbital images

MESSENGER
MErcury Surface, Space ENvironment, GEochemistry, and Ranging
Key to the generation of mosaic products:
- Calibration procedure [Hawkins et al., 2007]
- Photometric correction [Domingue et al., 2016]
- Global DEM & control network [Becker et al., 2016]
For the final mosaic products, all orbital images were considered for inclusion, regardless of the original imaging campaign of each.
For the final mosaic products, all orbital images were considered for inclusion, regardless of the original imaging campaign of each.
For the final mosaic products, all orbital images were considered for inclusion, regardless of the original imaging campaign of each.
Additionally, key to the generation of color mosaic products:

- Multispectral calibration

[Denevi et al., 2016]

8-color global mosaic

665 m/pixel

Filter centers in nm:
430, 480, 560, 630,
750, 830, 900, 1000

(R: PC2, G: PC1, B: 430/1000)
Generation of a global DEM and control network for Mercury improved registration and the final mosaic products

[The largest control network ever processed in ISIS3. Becker et al., 2016]

Rachmaninoff (306-km diameter, 27.7°N, 57.4°E)
(R: PC2, G: PC1, B: 430/1000)
The higher spatial resolution 3-color mosaic complements the global 8-color product. All images in this product are in the global control network.
5-color mosaic
Minimizes the phase angle

332 m/pixel
Filter centers in nm: 430, 560, 750, 830, 1000
Together, these seven mosaics form a complementary set of products that enable Mercury’s surface to be robustly investigated from a diverse set of viewing, imaging, and multispectral conditions.