Implementation of Key Science into Lunar Exploration

Theme 1: Important Scientific Sites on the Moon

James W. Head, Department of Geological Sciences, Brown University, Providence, RI 02912 (james_head@brown.edu)
The Context for Important Scientific Sites on the Moon

1. **What are the questions? Charge to Speakers:**
 - Summarize important scientific problems.
 - Define requirements to fulfill scientific objectives.
 - How does the implementation of scientific objectives fit in with the exploration architecture?

2. **Guidance from the past.**

3. **The present environment.**

4. **The future.**
Guidance from the Past: The Apollo Program

• Why did we go?

• What did we do to prepare to go?
 – Landing site mapping, analysis and selection studies.
 – Close coordination: Science and engineering synergism.

• What did we do when we got there?
 – Accomplished the national goal: Apollo 11.
 – Undertook an historic scientific exploration program (A11-17).
 – Optimized Human/Robotic Exploration (ALSEP, LSE, CSM SIM, DMLRV).
 – Sent a professional geoscientist to the Moon (A17 LMP Harrison Schmitt).

• What was the legacy?
 – Prestige, pride, and perspective.
 – Revolutionized human understanding of Earth and planetary origin and history! The Moon is a keystone in our knowledge.
Apollo and Luna
Lunokhod, Apollo and MER Traverses to Scale

Apollo 11 surface activities and Pathfinder Sojourner traverse are not visible at this scale

James W. Head and Peter Neivert, Brown University
Lunar maria and dark mantle deposits
Mechanisms of Lithospheric Heat Transfer

- Lithospheric conduction
- Mercury, Moon, Mars
- Venus
- Earth
- Plate recycling
- Volcanic heat pipes

S. C. Solomon
Lunar Atmosphere and Volatile Traps
The Lunar Samples

- Low TiO\textsubscript{2} Basalt
 - 12002

- Polymict Breccia
 - 72275

- High TiO\textsubscript{2} Basalt
 - 70017

- Anorthosite
 - 60025
Important Scientific Sites
Charge to Speakers

• Summarize important scientific problems.
 – A host of fundamental scientific problems related to lunar and planetary formation, internal structure, chronology, processes and evolution.

• Define requirements to fulfill scientific objectives.
 – Need global access (farside, nearside, polar) for robotic and human sortie missions.

• How does the implementation of scientific objectives fit in with the current architecture?
The Present Environment

• The Good News!
 – We have a Visionary Presidential Mandate.
 – NASA human exploration is on the move.
 – Humans are destined to explore the Solar System.
 – The Moon is the clear first stepping stone.
 – We have a dedicated Administrator, ESMD-SMD Staff.
 – Charge: Science, Resources, Commerce.

• The Chinese Fortune Cookie Conundrum.
The Present Environment

• Seven Steps to the Seventh Human Landing on the Moon:
 – Return to flight.
 – Complete the ISS (Space Station).
 – Retire the STS (Shuttle).
 – Build new launch capability.
 – Build new transportation capability.
 – Build new landing/infrastructure capability.
 – Undertake lunar surface landings and operations.

• Budget Reality: Iraq, Katrina, Continuing resolutions.

• NASA Organization and Funding: ESMD and SMD.
The Present Environment: ESMD

• What does all this say about important scientific sites on the Moon?
 – Currently no Vision/ESMD requirements or plans for post-LRO robotic missions.
 – Initial human landings are likely to go to the same place to build up infrastructure for the outpost.
 – The current notional outpost site is centered on South Pole-Shackleton Crater rim.
 – Equatorial to mid-latitude outpost locations require surviving lunar night.
 – Current cost envelope and schedule do not permit this option.
 – Capabilities for science sorties at/from notional South Pole outpost (LRV-S/C) are not in current plan or budget envelope.
 – Sorties from Earth to non-outpost destinations possible, but require extra $2-4B/flight.
 – None of this should be surprising.
The Future: Where Do we Go from Here?

- Maintain the Vision for Space Exploration.
- Help sustain the Vision for Space Exploration. The down years!
- Learn from Apollo: The science didn’t happen overnight.
- Support the ESMD staff:
 - Help develop Science and Engineering Synergism.
 - Help design outpost science exploration strategy and tools for humans.
 - Fight hard to keep exploration options open (global access, human/robotic).
 - Always ask: What is the legacy of today’s decisions?
The Future: Where Do we Go from Here?

• Support the SMD Staff:
 – Help define what science can and can’t be done at a human outpost.
 – Help develop complementary post-LRO robotic lunar program (global access).
 – Craft a Lunar Scout Program?
 – Help SMD/ESMD synergism: Coleen Hartman.
 – Maintain a balanced and vibrant SMD program.

• What is our responsibility as scientists? Be proactive:
 – Help mobilize Congress to provide additional funding for lunar science and the Vision.
 – Cultivate and pursue international scientific partners.
 – Maintain exciting cutting edge research to frame exploration activities and sustain the Vision.
 – Be critical but constructive: Fight hard to keep exploration options open.
 – Help to define the legacy for the Vision for Space Exploration.
 • Science, Resources, Commerce.