Chairs: P. A. Bland
 J. W. Rice

Golombek M. P.*
Erosion Rates at the Mars Pathfinder Landing Site and Climate Change on Mars [#1387]
Aeolian features at the Pathfinder site limit the deflation rate to <0.1 nm/yr (or m/Ga) and argues for the present cold and dry environment since 3.5–1.8 Ga. Growing evidence suggests an earlier wetter environment with erosion rates orders of magnitude higher.

Kuzmin R. O.* Greeley R.
Local and Regional Aeolian Geomorphology at the Mars Pathfinder Landing Site Area: Evidence for Paleowind Regime [#1415]
Images from the Mars Pathfinder and Global Surveyor missions for the MPF site show a complex aeolian history with evidence for a change in the climate/wind regime from ESE-WNW to the current NE-SW wind.

Bridges N. T.* Parker T. J. Kramer G. M.
Rock Abrasion on Mars: Clues from the Pathfinder and Viking Landing Sites [#1907]
Ventifact morphology and statistics at the three Mars landing sites are examined using new “super-resolution” IMP and Viking Lander images.

Stefanis M. S.* Moore H. J.
Impact Crater Deposits at the Mars Pathfinder Landing Site: Updated Results Considering Effects of Aerodynamic Drag on Ejecta [#1409]
When effects of aerodynamic drag are considered, conclusions regarding material at the MPF site can be drawn. Impactites from distant craters are unlikely, even with the new calculations of mu ratios. Thus, the majority of materials would be locally derived.

Bland P. A.* Smith T. B.
Meteorite Accumulations on Mars [#1673]
We identify a narrow range of small-mass meteoroids which should impact Mars surface at survivable speeds. With oxidative weathering ~10^{-3} lower than Earth, this small flux could give rise to large accumulations: ~10^4 meteorites > 10 g per km^2.

Hörz F.* Cintala M. J.
Collisionally Processed Rocks on Mars [#1641]
Pathfinder photos suggest that specific surface features and overall shapes of some boulders reflect collisional processes on sub-meter scales on the martian surface.

Rice J. W. Jr.* Lemmon M. T. Smith P. H. Yingst R. A.
Sedimentary Structures at the Mars Pathfinder Landing Site [#2063]
Fluvial geomorphic investigations show that a rich and complex history of events has occurred at the Pathfinder landing site.

Parker T. J.* Kirk R. L. Davies M. E.
Location and Geologic Setting for the Viking 1 Lander [#2040]
Super res. of the horizon at VL-1 has revealed “new” features we use for triangulation. We propose an alternative landing site location for which we believe the confidence is very high. Super res. of VL-1 images also reveals much of the drift material at the site to consist of gravel-size deposits.
Larsen K. W.* Arvidson R. E. Jolliff B. L. Clark B. C.
Comparisons of Soils and Rocks at the Viking Lander 1 and Pathfinder Landing Sites [1443]
Comparison of images taken at the Viking 1 and Pathfinder landing sites indicates a greater abundance of dark granules at the Pathfinder site. Correspondence analysis applied to the chemical data obtained at these sites supports this conclusion.

McSween H. Y. Jr.* Ghosh A.
Sulfur Mixing Relationships in Martian Soils, and Possible Implications for a Globally Homogeneous Dust Layer [1083]
Linearities in plots of Viking and Pathfinder soil compositions may arise from cementation by sulfate. Viking sulfur-poor dust is similar to Pathfinder average soil, but differences in some elements argue against a globally homogeneous dust layer.

Brückner J. Dreibus G.* Lugmair G. W. Rieder R. Wänke H. Economou T.
Chemical Composition of the Martian Surface as Derived from Pathfinder, Viking, and Martian Meteorite Data [1250]
New APXS data of C (< 0.8 wt.%), Mn, Cr, and K. Element systematics of Pathfinder samples and SNC are matching. A mixing diagram of rocks, soils, and mean SNC values indicates an about 1:1 abundance ratio of felsic and mafic rocks for soil.

McLennan S. M.*
Sedimentary Geochemistry on Mars: Major Element Evidence from Pathfinder and Viking [1700]
Martian soil and rock chemistry may be influenced by sedimentary processes such as weathering and mineral fractionation during transport. Soils provide an estimate of the martian upper crust which approximates to typical basaltic shergottites.

Morris R. V.* Shelfer T. D. Ming D. W. Golden D. C.
Magnetic Properties Experiments with a Pathfinder Magnet Array on Mauna Kea Volcano: Evidence the Martian Magnetic Mineralogy is Fe-Ti Spinel [1802]
Magnetic properties experiments on Mauna Kea volcano with a copy of the Pathfinder Magnet Array and palagonitic aeolian dust show Fe-Ti spinels are a viable interpretation of the Pathfinder magnetic properties experiment.