Introduction: For lithotrophic bacterial communities in the deep subsurface, sustainable energy sources, particularly hydrogen, are required [1]. This hydrogen-based chemoautotrophy is considered one of the first metabolisms that appeared on the early Earth. Hydrogen gas is also a key ingredient (electron donor) for the abiotic synthesis of organic compounds from oxidized carbon compounds such as CO₂. To date several abiotic sources and mechanisms of H₂ in the Earth’s subsurface have been discussed and identified, including serpentinization of mafic/ultramafic rocks, fracture-surface reactions of silicate rocks with water, and radiolysis of water. Although these abiotic reactions can be shown to produce H₂ in laboratory [2], the relevance and importance of fracture-surface reactions and radiolysis in natural settings are very poorly understood and documented.

Field testing at a series of radioactive waste-contaminated and uncontaminated sites at the Oak Ridge Field Research Center (ORFRC) in Oak Ridge, Tennessee revealed unusually large equilibrium gas-phase H₂ concentrations in groundwater, ranging from 0.1 to 13.9%, by volume, in many monitoring wells surrounding four former radiological wastewater disposal ponds at the Y-12 plant in Oak Ridge, Tennessee [3, 4]. The source of this high H₂ gas is of great interest, and candidates include radiolysis, biogenic, chemogenic, electrolytic, geologic, and thermolytic. Distinct δ²H values of H₂ from different sources could provide insights into the source of elevated H₂ (up to 14%) encountered in groundwater from the ORFRC site.

Results and Discussion: Unusually high hydrogen gas concentrations (up to 4% and 14%) have been observed in two monitoring wells (FW010 and FW112, see Figure 1) located within 10 m of the asphalt capped area of the S-3 ponds impoundment. In other proximate groundwater monitoring wells, H₂ concentrations greater than 1000 ppmv have been regularly measured; three additional wells within 50 m of this area and within the uranium, nitrate, and acidity contaminant plume have also been found to contain H₂ concentrations greater than 1000 ppmv when sampled on several dates. Survey sampling of many additional wells within the ORFRC has exhibited lower and more typical H₂ concentrations. Even at waste sites impacted with fuels and waste solvents, published H₂ concentrations are typically less than 100 ppmv, that is, orders-of-magnitude lower than those observed at the ORFRC site. We are not aware of published reports of such high H₂ concentrations in groundwater or sediments in field settings.
Figure 1. Equilibrium gas concentrations in monitoring well FW010 at the ORFRC between October 2005 and August 2007 [4].

The δ^2H value of natural H2 varies significantly, depending on their sources and production mechanisms. Near-surface atmospheric H2 has δ^2H values, ranging from -300 to +100 ‰ [5]. For example, H2 from fossil-fuel and biomass burning has δ^2H values of -200±10 and -290±60 ‰, respectively [6]. δ^2H values of microbial H2 are in the range of -700 to -800 ‰ [5], which are close to that in isotopic equilibrium with local groundwater due apparently to enzymatic activities. In contrary, experimentally produced radiolytic H2 has much higher δ^2H values of -500 to -550 ‰ [7], reflecting kinetic isotope effects during radiolysis.

δ^2H values of dissolved H2 in groundwater were analyzed at two wells nearby the S-3 pond (FW106 and FW113-2) and one well (PTMW02) several hundred meters down-gradient. The δ^2H values ranges from -586 to -493 ‰, except for the May 2008 sample at FW106 (-749 ‰). The former values are clearly out of isotopic equilibrium with the groundwater (δ^2H=-37.6 to -13.2 ‰), and consistent with the radiolytic origin of the H2 gases (-500 to -550 ‰, [7]). In contrary, the depleted δ^2H of the May 2008 sample at FW106 (-749 ‰) is very close to that in isotopic equilibrium with the groundwater. Microbial mediation of H2, including by methanogens, is the most likely cause of the observed rapid isotopic exchange for the otherwise very slow reaction (10^5-10^6 years) [7].

Results of this study demonstrate for the first time that high concentrations (up to 14% ppmv) of H2 can be produced in the subsurface of radioactive-waste contaminated sites most likely by the radiolysis of water. However, unambiguous identifications of radiolytic sources of H2 in field could be challenging [8], because unique δ^2H values (-500 to -600 ‰) of radiolytic H2 could be readily erased by microbial activities. The likely radiolytic source of the observed high H2 concentrations has far-reaching implications for abiotic organic synthesis and chemolithoautotrophy, both in terrestrial and extraterrestrial environments.

References:

Acknowledgement: This research was funded by Office of Science Biological and Environmental Research, Environmental Remediation Sciences Program (ERSP) and by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy under contract DE-AC05-00OR22725, Oak Ridge National Laboratory, managed by UT-Battle, LLC.