The Chemistry of Oxidized Carbon in Comet C/2002 T7 (LINEAR) revealed through Infrared Spectroscopy William M. Anderson Jr.¹, M. A. DiSanti², M. J. Mumma², B. P. Bonev¹, G. L. Villaneuva², N. Dello Russo³, K. Magee-Sauer⁴, E. L. Gibb⁵ ¹Catholic University of America & NASA's GSFC, ²Solar System Exploration Division, NASA Goddard Space Flight Center, ³Applied Physics Laboratory, The John Hopkins University, ⁴Rowan University, ⁵University of Missouri - St. Louis.

Introduction: Cometary nuclei are the most primitive remnants of the early Solar System. Their physical and chemical attributes allow a glimpse into the conditions in which icy bodies formed. Parent volatiles in comets are now routinely studied, and a significant diversity in composition among the comets sampled to date has been demonstrated. This forms the foundation of an emerging cometary taxonomy based on chemical composition. [1] [2]

Observations and Results: In spring 2004, we observed comet C/2002 T7 (LINEAR) using the facility echelle spectrometer (CSHELL) at the NASA Infrared Telescope Facility on Mauna Kea, Hawaii. CSHELL offers seeing-limited spatial resolution and sufficiently high spectral resolving power ($R \sim 2.5 \times 10^4$) to permit line-by-line intensities to be measured along its 30 arcsecond slit. Emission lines from multiple molecular species were targeted in the 3 to 5 µm wavelength region. Our observations revealed an extremely rich chemistry in C/2002 T7. [3]

Here we present rotational temperatures, production rates, and mixing ratios for CO, H_2O , H_2CO and CH_3OH spanning UT May 3-9 2004 ($R_h=0.66-0.71$ AU) and UT May 30 - June 2 2004 ($R_h\sim1.0$ AU). Comparisons in chemical abundance with heliocentric distance will be discussed as a test for possible compositional heterogeneity within the nucleus of C/2002 T7.

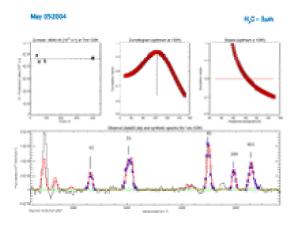


Figure 1: The observed spectra and the related rotational temperature analysis for 3 micron water detected in C/2002 T7 LINEAR on May 9, 2004.

This research is supported by the NASA Planetary Astronomy Program (RTOP 344-32-98) and the NASA Astrobiology Program (RTOP 344-53-51).

References: [1] Mumma, M. J., et al. 2003. *Advances in Space Research* **31**, 2563-2575 [2] DiSanti, M. A., M. J. Mumma, et al. 2003. *J Geophysical Research* **108**, 15(1-19). [3] DiSanti, M. A., Bonev, B.P., et al. 2006. *ApJ* **650**, 470-483