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Introduction: The impact cratering process is af-

fected by two aspects of the shape of the target sur-
face: a shape that conforms to the overall geoid and 
one that varies locally from the geoid.  This paper con-
siders the global shape of a spherical target. Two ef-
fects are analyzed: the elliptical trajectories of the 
ejecta (in the absence of an atmosphere) and the varia-
tion of depth of the deposited ejecta due to the spheri-
cal target. 

The determination of the shape of the ejecta depth 
depends on the radial profile of ejecta velocity. A scal-
able velocity profile for lunar basins, partly physical 
and partly empirical, is presented.  
     Assumptions: The target and its geode are assumed 
to be approximately spherical and co-centric. The im-
pactor is assumed to arrive at a high angle from the 
horizontal, so that the impact has nearly circular sym-
metry. Any atmosphere present in the target is as-
sumed to be negligible, in respect to the size of the 
impact. The scaling laws for the gravity domain [1] are 
assumed valid with the radius being measured along an 
arc of the target surface, following the target’s geoid. 
    Model of impact feature’s ejection cavity: The 
model and scaling rules are taken from reference [1]. 
An ejection cone is produced at a constant angle φ 
with the horizontal and a magnitude of velocity v (r), 
from r = 0 to the surface intercept radius. The surface 
intercept radius is at the intercept between the ejection 
cavity and the estimated target surface, at the inner 
base of the rim, and is taken to be equivalent to the 
term “radius of the transient cavity” in [1]. The distinc-
tion is made because there has been controversy about 
whether the radius of the physical transient cavity is 
greater or smaller than the radius of the excavation 
cavity. 
   The volume thrown from an incremental ejection 
ring per unit of radius is assumed to follow the scaling 
law [1] out to the surface intercept radius. 
   Calculation of the deposited depth: The incre-
mental ejecta is thrown from the internal radius r to the 
deposit radius d = r + R, where R is the range of ejec-
tion (see Figure 1). The depth of the ejection field can 
be found by dividing the incremental volume of ejecta 
by the ratio of the area of the incremental deposit ring 
to that of the incremental ejection ring. The relative 
width of the rings is the derivative of R(r). The cir-
cumference of the rings depends on R, as will be de-
scribed. An allowance may be made for an increase in 
porosity.  

    Elliptical trajectory: The equation for the range of 
an elliptical trajectory (see Figure 1) is [2], [3]:  
Where g is the acceleration of gravity at the surface of 
the target, Rt is the radius of the target, and R is meas-

ured along an arc on the target surface. Ejecta from an 
incremental ring ejected at r is deposited at  
d = r + R.  

 
Figure 1: Deposit of ejecta from a large basin on a 
spherical target. R is the range of ejecta thrown out 
from the incremental ring at r and deposited at d. Ra-
diii r and d are measured along arcs of the surface 
from the point of impact. 
  
    Spherical target: On a spherical target the circum-
ference of each incremental ring depends on its radius, 
measured along the normal to the line between the 
point of impact and the antinode (see figure 1). The 
ratio of  the circumference of the deposit ring to that of 
the ejection ring (a factor in the determination of ejecta 
depth) is the Sin(E)/Sin(D) (see Figure 1). The depth 
of the ejecta increases as it falls closer to the antinode 
until it becomes theoretically infinite there, where D = 
0. Then it decreases again. In a real case, the chaotic 
nature of the ejection cone may diffuse the deposit at 
the antinode, the ejecta that is focussed at a point lands 
with a large horizontal component of velocity in all 
directions, and the dynamic angle of repose affects the 
way the ejecta settles. 
   For moderate-sized basins, the antinode is in the far 
field of the ejecta, but in the Near Side Megabasin [5], 
[8] it lies within the ejecta blanket. Therefore, a very 
large amount of ejecta gathers there. 
    Ejection velocity: The profile of ejection velociy as 
a function of the ejection radius is needed to carry out 
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the range calculations. The scaling laws provide for an 
exponentially decreasing function of r, but as the rim is 
approached, this must be modified to bring the ejection 
velocity to 0. An empirical curve was found that pro-
vides a good fit to the ejecta fields of 50 large craters 
and basins on the Moon (see Fgure 2). An energy-
balance equation for the dependence of the magnitude 
of ejection velocity as a function of the radius [4] pro-
vides a good fit to the empirical profile, out to within 
7º of the rim.  

 
Figure 2: Ejection velocity as a function of radius.  
 
Using a flat-surface target model, this equation, modi-
fied by an empirical segment near the rim, provided a 
scalable [1] radial profile of the ejecta field that was a 
good match to the radial profiles of 50 large craters 
and basins of the Moon.  
   Applications: Using the methods presented above, 
models of the lunar South Pole-Aitken Basin and the 
newly identified Near Side Megabasin [5] were pro-
duced (Figures 3 and 4). 

 
Figure 3: Model (after isostasy) and topographic ra-
dial profile of the South Pole-Aitken Basin 

 
Figure 4: Model (after isostasy) and radial topog-
raphic profile of the Near Side Megabasin. 
 
The model of these two giant basins, together with 
those of the other 50 large craters and basins men-
tioned above, explain many features of the Moon. In 
particular, both the topography [6] and crustal thick-
ness [7] data are in good agreement with the model [8], 

[9] (Figure 5). To reconcile the topographic and crustal 
thickness data, full isostatic compensation is assumed 
for the South Pole-Aitken and the Near Side 
Megabasin. 

 
Figure 5: A comparison of the composite model with 
the current topography and the topography implied by 
crustal thickness data, after isostatic compensation. 
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