Sulfur Chemistry in K/T-Sized Impact Vapor Clouds. S. Ohno, S. Sugita, T. Kadono, S. Hasegawa, G. Igarashi, Dept. of Earth and Planetary Science, University of Tokyo (email: ono@space.eps.s.u-tokyo.ac.jp), Institute for Frontier Research on Earth Evolution, Japan Marine Science and Technology Center, The Institute of Space and Astronomical Science, Laboratory for Earthquake Chemistry, University of Tokyo

Introduction: The geologic record indicates that the mass extinction at K/T boundary, 65 Myrs ago, was caused by a hypervelocity impact of an asteroid or a comet [1]. During the K/T impact event, a large amount of sulfur was degassed from the impact site [e.g., 2, 3, 4]. The degassed sulfur converts to sulfuric acid aerosol and stays in the stratosphere for a long time [3, 4]. This reduces the sunlight significantly and leads to a mass extinction. However, if the degassed sulfur is dominated by SO$_3$ not SO$_2$, then the conversion to sulfuric acid aerosol occurs very rapidly and the blockage of sunlight does not last for a long time [3, 4, 5]. The chemical reaction of sulfur-oxides in an impact vapor cloud, nevertheless, has not been studied in detail previously, and the SO$_2$/SO$_3$ ratio in a vapor cloud is yet highly uncertain. The purpose of this study is to estimate the SO$_2$/SO$_3$ ratio in the K/T impact vapor cloud. Here we discuss the results of calculation of chemical equilibrium and kinetics of sulfur-containing species in an impact vapor cloud as well as mass spectroscopic analysis of vapor plumes created by laser irradiation on anhydrite.

Chemical Equilibrium Calculation: We calculated equilibrium chemical composition in vapor clouds generated from calcium sulfate (CaSO$_4$). We assumed several different impact velocities and different types of projectiles for the K/T impact.

The result of the calculation indicates that SO$_2$+1/2O$_2$ is more stable at high temperatures and high pressures and that SO$_3$ is more stable at low temperatures and low pressures. Over the entire range of the impact conditions we assumed, the SO$_2$/SO$_3$ ratio dramatically changes in the range between 600K and 1000K. If the reaction SO$_2$+O to SO$_3$ quenches at a temperature higher than 1000K, most of impact-degassed sulfur is released to the environment as SO$_2$. However, if the reaction SO$_2$+O to SO$_3$ quenches at a temperature lower than 600K, SO$_3$ is dominant.

Kinetics of Redox Reaction of Sulfur Oxides: We estimate the SO$_2$/SO$_3$ ratio in vapor clouds at the quenching temperature using a theoretical evaluation of chemical reaction rate of the reaction SO$_2$+O+M to SO$_3$+M [6]. The result of the calculation indicates that the SO$_2$/SO$_3$ ratio is smaller for a vapor cloud with a larger mass and that the SO$_2$/SO$_3$ ratio in a K/T-size vapor cloud is approximately unity. Because the result of this kinetic model estimation is an upper limit of the SO$_2$/SO$_3$, the SO$_2$/SO$_3$ ratio in K/T-size impact vapor cloud may have been much smaller than unity.

Laser Irradiation Experiment: A YAG laser beam (1.06µm of wave length, 25-400 mJ of pulse energy, 0.5-2 mm of irradiation spot diameter) was irradiated to a sample of anhydrite in a vacuum chamber. Vapor degassed by laser irradiation was analyzed with a quadrupole mass spectrometer (QMS). The gas sample obtained in every laser irradiation experiment was dominated by SO$_3$, but SO$_2$ was also detected. The SO$_2$/SO$_3$ ratios measured in experiments were between 80 and 300, and decrease with the laser beam diameter. The dependence of the SO$_2$/SO$_3$ ratio on laser beam diameter is SO$_2$/SO$_3$ = 120$^{-0.61}$.

The SO$_2$/SO$_3$ ratio in the experiment is about 103 time that in the kinetic model estimation for the size of vapor clouds produced in the laboratory. Our experimental results also show that the rate of decrease in the SO$_2$/SO$_3$ ratio obtained in the laser experiment as a function of vapor mass is higher than that predicted by the kinetic calculation. The power-low relation obtained in the laser experiments predicts that it will be 106 for a K/T-size impact vapor cloud. This strongly suggests the possibility that SO$_3$ was dominant in the degassed sulfur by the K/T impact.

Conclusion: Chemical equilibrium calculation indicates that SO$_3$ is more stable than SO$_2$+1/2O$_2$ at low temperatures and low pressures. Kinetic model calculation shows that the SO$_2$/SO$_3$ ratio in a K/T-size vapor cloud is less than unity. The SO$_2$/SO$_3$ ratio estimated based on the laser-irradiation experiments is about 106 for a K/T-size vapor cloud. Three lines of evidence strongly suggest that the SO$_2$/SO$_3$ ratio in K/T impact vapor cloud may have been much smaller than 1. Then sulfuric acid aerosol may not have blocked the sunlight for a long time. Instead, there may have been an extremely intense global acid rain immediately after (<100 days) the K/T impact.