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Qutline

The purpose of CRaTER is to directly characterize the
lunar ionizing radiation environment and to validate
radiation propagation models

Accomplish this with accurate detailed measurements of
propagation of incident energetic particles though
detectors and human tissue equivalent plastic
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+ Interaction of the above with the lunar surface...



Effects of ionizing radiation
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Protecting humans

Keep risk of chronic dose low, i.e.
lifetime cancer risk due to integrated
dose over mission(s) below mandated
level

Protect against serious injury from acute
dose due to prompt radiation from Sun




Prompt solar radiation January 2005
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Challenges

Protect astronauts and equipment during
transit to and habitation of lunar surface

Understand the lunar environment, optimize
shielding design, accurate predictions of
biological effects

Primary spectrum of radiation is variable
(time, energy, composition)
Effect of radiation depends on properties of
the radiation

Total energy deposited in the body

Rate of radiation dose

Particles with higher rate of energy deposition
dE/dx may do more damage (dE/dx ~ z?)

Particles fragment and scatter (focused damage)

(Courtesy, Mark
Weyland, NASA
Johnson Space Center,
Space Radiation
Analysis Group)



CRaTER Measurement Obijectives

Directly measure the LET spectrum:

the differential flux (time™' solid

angle') of ionizing radiation as a

function of LET Hazard = Integral of (LET *

Characterize the LET of the lunar Biological impact)

radiation environment as a function
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o A “telescope”

Three pairs of silicon
detectors measure dE/dx

Thin detector low gain (large

dE /dx)

Thick detector high gain (low
dE/dx)

Two blocks of A150 TEP

-1 Programmable minimum dE/
dX to trigger an event

-1 Process up to 300,000
events/sec

4096-channel dE/dx

< 0.3% accuracy ) Lunar entrance

71 Send first 1,200 events/sec to
Earth

71 Reconfigures automatically for
flares




CRaTER Performance Specs

Zenith

Three thick low LET detectors 200 keV-100 MeV

Three thin high LET detectors 2 MeV — 300 MeV
Overall LET range 0.2 keV/um to 2 MeV/ um

Digitize energy loss in each detector at 0.3% accuracy
Send back up to 1200 events/second

Detector rates, single chip dosimeter

Nadir
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Extreme example 1 GeV /nuc Fe at Brookhaven

An iron enters the instrument
and passes through it

Iron passed through the first

detector but broke up in the
TEP (dE/dx ~ z?)

Iron broke up before it
reached CRaTER
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- CRaTER Results

Performance since launch

Initial results



Overview of initial results

CRaTER is performing as expected
Noise levels are low
Insensitive to temperature over orbit

Continuous data taking since turn on one day after launch

Rates are much higher than originally estimated
Rarest events (> 100 MeV, punch through whole telescope) seen once a second

The unprecedented solar minimum has led to the highest GCR fluxes and dose
rates in the history of human space exploration

Integrated LET spectra showing presence of nuclear interactions, inelastic
scatterings, other deviations from simple radiation transport

GCR rates drops as we approach moon (due to blocking increasing fraction
of the sky) until 500 km altitude
Rate does not fall at expected rate as we get closer to moon

lonizing radiation > 10 MeV from lunar surface — possibly due to interactions
between GCR and surface

Lunar surface radiation dose higher than expected as a result



First observations...
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Rates higher than expected

Rarest events are
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Total dose since launch
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LET Spectra
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Orbital modulation of cosmic rays
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Excess radiation near surface
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Observed rate as a
function of altitude

Dashed line is predicted
variation of rate with
altitude based on
geometric model

Model works well above

800 km

Flux does not fall off as
expected below 800 km

Additional source of
>10 MeV radiation
seen at lower altitudes
(lunar surface)

Dose at surface about
25% worse than we'd
expected



Composition of lunar radiation
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The Sunspot Cycle:




Summary
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CRaTER primary science data quality is excellent and all systems are
behaving as designed; off to great start in meeting ESMD Level 1
requirements as well as CRaTER secondary science goals

Primary science data has been flowing into the CRaTER Science
Operations Center (SOC) continuously since initial power-up on
6/20/09 (approximately one-day post-launch)

Variations seen in fluxes of galactic cosmic rays (GCR) during (no SEPs
yet...):

Cruise Phase

Lunar Orbit Insertion (LOI)
Commissioning Phase
Main ESMD Mission Phase

Prime ESMD data (LET spectra) of
high quality, and are allowing new
science of GCR and their interaction
with the Moon.




