NASA Constellation Program Office Regions of Interest on the Moon:
An update for the 2009 Annual Meeting of the Lunar Exploration and Analysis Group

John E. Gruener
Lunar Surface Systems Project Office
NASA Johnson Space Center
The regions of interest identified by the Constellation Program Office (CxP):
• Illustrate the diversity of scientific and resource opportunities, and geographic terrains and locations
• As a set, they form a representative basis for scientific exploration, resource development, and mission operations

The CxP regions of interest DO NOT represent the initial step in a site selection process for future human missions to the Moon
CxP NAC Targets, ROIs and Products

- Leveraged heavily on past site selection work and recent Clementine and Lunar Prospector missions to the Moon
 - Consideration of scientific, resource utilization, and operational merits and desire to span lunar terrain types
 - CxP corrected & refined coordinates, organized into 50 sites grouped into two “ tiers” (based on LROC PI recommendation) – 12/08
 - Prepared CxP Target Catalog for eventual transfer to LRO – 1/09, example entries to follow

Customers:

Data / Products:

<table>
<thead>
<tr>
<th>Photo-mosaics & Digital Elevation Models</th>
<th>Altair/ALHAT</th>
<th>Surface Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>♦ Accurate representative site data for lander design and terrain relative navigation (TRN) & hazard avoidance system development.</td>
<td>♦ Accurate representative site data for trafficability assessments and mobility system designs.</td>
<td>♦ Statistical representation of surface mobility obstacles/hazards.</td>
</tr>
<tr>
<td>♦ If targets are actual landing sites, pin-point landing accuracy through TRN</td>
<td>♦ Relevant ROI ~ 10 km radius</td>
<td>♦ If targets are actual landing sites, detailed operational traverse planning.</td>
</tr>
<tr>
<td>♦ Relevant ROI ~5 km radius</td>
<td></td>
<td>♦ Relevant ROI ~ 10 km radius</td>
</tr>
<tr>
<td>♦ Accurate representative lander-scale boulders, craters, slopes distributions for lander design and hazard avoidance system development.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>♦ If targets are actual landing sites, pin-point landing site designation.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>♦ Relevant ROI ~5 km radius</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Geoscience and a Lunar Base Workshop – 1988
Site Selection Strategy for a Lunar Outpost – 1990
Exploration Systems Architecture Study (ESAS) - 2005

Leveraged heavily on past site selection work and recent Clementine and Lunar Prospector missions to the Moon

- Consideration of scientific, resource utilization, and operational merits and desire to span lunar terrain types
- CxP corrected & refined coordinates, organized into 50 sites grouped into two “ tiers” (based on LROC PI recommendation) – 12/08
- Prepared CxP Target Catalog for eventual transfer to LRO – 1/09, example entries to follow

Customers:

Data / Products:

<table>
<thead>
<tr>
<th>Photo-mosaics & Digital Elevation Models</th>
<th>Altair/ALHAT</th>
<th>Surface Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>♦ Accurate representative site data for lander design and terrain relative navigation (TRN) & hazard avoidance system development.</td>
<td>♦ Accurate representative site data for trafficability assessments and mobility system designs.</td>
<td>♦ Statistical representation of surface mobility obstacles/hazards.</td>
</tr>
<tr>
<td>♦ If targets are actual landing sites, pin-point landing accuracy through TRN</td>
<td>♦ Relevant ROI ~ 10 km radius</td>
<td>♦ If targets are actual landing sites, detailed operational traverse planning.</td>
</tr>
<tr>
<td>♦ Relevant ROI ~5 km radius</td>
<td></td>
<td>♦ Relevant ROI ~ 10 km radius</td>
</tr>
<tr>
<td>♦ Accurate representative lander-scale boulders, craters, slopes distributions for lander design and hazard avoidance system development.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>♦ If targets are actual landing sites, pin-point landing site designation.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>♦ Relevant ROI ~5 km radius</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Geoscience and a Lunar Base Workshop – 1988
Site Selection Strategy for a Lunar Outpost – 1990
Exploration Systems Architecture Study (ESAS) - 2005

Leveraged heavily on past site selection work and recent Clementine and Lunar Prospector missions to the Moon

- Consideration of scientific, resource utilization, and operational merits and desire to span lunar terrain types
- CxP corrected & refined coordinates, organized into 50 sites grouped into two “ tiers” (based on LROC PI recommendation) – 12/08
- Prepared CxP Target Catalog for eventual transfer to LRO – 1/09, example entries to follow

Customers:

Data / Products:

<table>
<thead>
<tr>
<th>Photo-mosaics & Digital Elevation Models</th>
<th>Altair/ALHAT</th>
<th>Surface Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>♦ Accurate representative site data for lander design and terrain relative navigation (TRN) & hazard avoidance system development.</td>
<td>♦ Accurate representative site data for trafficability assessments and mobility system designs.</td>
<td>♦ Statistical representation of surface mobility obstacles/hazards.</td>
</tr>
<tr>
<td>♦ If targets are actual landing sites, pin-point landing accuracy through TRN</td>
<td>♦ Relevant ROI ~ 10 km radius</td>
<td>♦ If targets are actual landing sites, detailed operational traverse planning.</td>
</tr>
<tr>
<td>♦ Relevant ROI ~5 km radius</td>
<td></td>
<td>♦ Relevant ROI ~ 10 km radius</td>
</tr>
<tr>
<td>♦ Accurate representative lander-scale boulders, craters, slopes distributions for lander design and hazard avoidance system development.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>♦ If targets are actual landing sites, pin-point landing site designation.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>♦ Relevant ROI ~5 km radius</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Geoscience and a Lunar Base Workshop – 1988
Site Selection Strategy for a Lunar Outpost – 1990
Exploration Systems Architecture Study (ESAS) - 2005

Leveraged heavily on past site selection work and recent Clementine and Lunar Prospector missions to the Moon

- Consideration of scientific, resource utilization, and operational merits and desire to span lunar terrain types
- CxP corrected & refined coordinates, organized into 50 sites grouped into two “ tiers” (based on LROC PI recommendation) – 12/08
- Prepared CxP Target Catalog for eventual transfer to LRO – 1/09, example entries to follow

Customers:

Data / Products:

<table>
<thead>
<tr>
<th>Photo-mosaics & Digital Elevation Models</th>
<th>Altair/ALHAT</th>
<th>Surface Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>♦ Accurate representative site data for lander design and terrain relative navigation (TRN) & hazard avoidance system development.</td>
<td>♦ Accurate representative site data for trafficability assessments and mobility system designs.</td>
<td>♦ Statistical representation of surface mobility obstacles/hazards.</td>
</tr>
<tr>
<td>♦ If targets are actual landing sites, pin-point landing accuracy through TRN</td>
<td>♦ Relevant ROI ~ 10 km radius</td>
<td>♦ If targets are actual landing sites, detailed operational traverse planning.</td>
</tr>
<tr>
<td>♦ Relevant ROI ~5 km radius</td>
<td></td>
<td>♦ Relevant ROI ~ 10 km radius</td>
</tr>
<tr>
<td>♦ Accurate representative lander-scale boulders, craters, slopes distributions for lander design and hazard avoidance system development.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>♦ If targets are actual landing sites, pin-point landing site designation.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>♦ Relevant ROI ~5 km radius</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CxP Target Priority Strategy

- CxP targets (50 total) are divided into two “tiers” of 25 each in event of mutual interference
- Region of Interest and observations necessary for specific data products prioritized to maximize total data return
- Targeting updates – simple process, but acquisition becomes harder as mission progresses (interference, lack of time)
- CxP target coverage will extend into SMD mission – transition/frozen orbit imaging possibilities

Priority 1: 10x10 km All Targets with “full observations***”

Priority 2: Other LROC Level 1 measurement requirements

Priority 3: 20x20 km All Targets “best effort” full observations + other Co-I or LRO science

Priority 4: 40x40 km All Targets “best effort***” nadir mosaics + outside science requests

*The full set of observations include:

1. Monoscopic image mosaic
2. Geometric stereo images
 - Two observations
 - One nadir, one at 20° off nadir (requires s/c slew)
 - Solar incidence angle 50-68° off vertical if possible
3. Photometric stereo images
 - Four observations with different solar incidence & azimuth angles
 - All nadir
4. Hazards
 - Two Sets
 - One at solar incidence angle of 66-72° off vertical, one near 80° off vertical
Actual number of images required will depend on specific orbit groundtracks, lighting, interference etc. and could be substantially more.
LEAG LROC SAT
January-April 2009

♦ Chair, Paul G. Lucey, U. Hawaii

♦ Science Subgroup
 • Jeffrey Gillis-Davis, U. Hawaii
 • B. Ray Hawke, U. Hawaii

♦ ISRU Subgroup
 • Larry Taylor, U. Tenn, Knoxville
 • Mike Duke, At-large lunar scientist

♦ Operations Subgroup
 • Tye Brady, Draper Lab
 • Todd Mosher, Sierra Nevada Corporation

♦ Observers
 • Mike Wargo, NASA
 • Steve Mackwell, LPI
 • Clive Neal, LEAG
LEAG LROC SAT
Comparison Methodology Overview (Illustrated)

Expert Assessment

Apply Category Weightings

Apply Feature Weightings

Science Ranking

ISRU Ranking

OPS Ranking

Overall Ranking For Site

Category Ranking

Overall Ranking

List of 25 Tier_1 sites and 25 Tier_2 Sites, each with specified coordinates (and list of any newly considered candidates)

Expert opinion on scientific features designated for each site

Expert opinion on ISRU features designated for each site

Expert opinion on operational features designated for each site

GROUP RECOMMENDATIONS
Constellation LRO NAC Targets

<table>
<thead>
<tr>
<th>Tier 1</th>
<th>Code</th>
<th>Name</th>
<th>Long</th>
<th>Lat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ATK</td>
<td>Aitken Crater</td>
<td>173.48</td>
<td>-16.76</td>
</tr>
<tr>
<td></td>
<td>ALP</td>
<td>Alphonsus Crater</td>
<td>-2.16</td>
<td>-12.56</td>
</tr>
<tr>
<td></td>
<td>ANX</td>
<td>Anaxagoras Crater</td>
<td>-9.30</td>
<td>73.48</td>
</tr>
<tr>
<td></td>
<td>A15</td>
<td>Apollo 15</td>
<td>3.66</td>
<td>26.08</td>
</tr>
<tr>
<td></td>
<td>A16</td>
<td>Apollo 16</td>
<td>15.47</td>
<td>-9.00</td>
</tr>
<tr>
<td></td>
<td>APB</td>
<td>Apollo Basin</td>
<td>-153.72</td>
<td>-37.05</td>
</tr>
<tr>
<td></td>
<td>AR1</td>
<td>Aristarchus 1</td>
<td>-48.95</td>
<td>24.56</td>
</tr>
<tr>
<td></td>
<td>AR2</td>
<td>Aristarchus 2</td>
<td>-52.40</td>
<td>27.70</td>
</tr>
<tr>
<td></td>
<td>BUL</td>
<td>Bullialdus Crater</td>
<td>-22.50</td>
<td>-20.70</td>
</tr>
<tr>
<td></td>
<td>COP</td>
<td>Copernicus Crater</td>
<td>-20.01</td>
<td>9.85</td>
</tr>
<tr>
<td></td>
<td>GRT</td>
<td>Gruithuisen Domes</td>
<td>-40.14</td>
<td>36.03</td>
</tr>
<tr>
<td></td>
<td>HTZ</td>
<td>Hertzsprung</td>
<td>-125.56</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td>KNG</td>
<td>King Crater</td>
<td>119.91</td>
<td>6.39</td>
</tr>
<tr>
<td></td>
<td>MAL</td>
<td>Malapert Massif</td>
<td>-2.93</td>
<td>-85.99</td>
</tr>
<tr>
<td></td>
<td>CRS</td>
<td>Mare Crisium</td>
<td>58.84</td>
<td>10.68</td>
</tr>
<tr>
<td></td>
<td>MUR</td>
<td>Murchison Crater</td>
<td>-0.42</td>
<td>4.74</td>
</tr>
<tr>
<td></td>
<td>NPO</td>
<td>North Pole</td>
<td>76.19</td>
<td>89.60</td>
</tr>
<tr>
<td></td>
<td>OR1</td>
<td>Orientale 1</td>
<td>-95.38</td>
<td>-26.20</td>
</tr>
<tr>
<td></td>
<td>PRY</td>
<td>Peary Crater</td>
<td>30.00</td>
<td>88.50</td>
</tr>
<tr>
<td></td>
<td>RMB</td>
<td>Rima Bode</td>
<td>-3.80</td>
<td>12.90</td>
</tr>
<tr>
<td></td>
<td>SPO</td>
<td>South Pole</td>
<td>-130.00</td>
<td>-89.30</td>
</tr>
<tr>
<td></td>
<td>SPA</td>
<td>South Pole-Aitken Basin Interior</td>
<td>-159.94</td>
<td>-60.00</td>
</tr>
<tr>
<td></td>
<td>STR</td>
<td>Stratton</td>
<td>166.88</td>
<td>-2.08</td>
</tr>
<tr>
<td></td>
<td>SPG</td>
<td>Sulpicius Gallus</td>
<td>10.37</td>
<td>19.87</td>
</tr>
<tr>
<td></td>
<td>TYC</td>
<td>Tycho Crater</td>
<td>-11.20</td>
<td>-42.99</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tier 2</th>
<th>Code</th>
<th>Name</th>
<th>Long</th>
<th>Lat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BAL</td>
<td>Balmer Basin</td>
<td>69.82</td>
<td>-18.69</td>
</tr>
<tr>
<td></td>
<td>CMP</td>
<td>Compton/Belkovich Th Anomaly</td>
<td>99.45</td>
<td>61.11</td>
</tr>
<tr>
<td></td>
<td>DAN</td>
<td>Dante Crater</td>
<td>177.70</td>
<td>26.14</td>
</tr>
<tr>
<td></td>
<td>FLM</td>
<td>Flamsteed Crater</td>
<td>-43.22</td>
<td>-2.45</td>
</tr>
<tr>
<td></td>
<td>HRT</td>
<td>Hortensius Domes</td>
<td>-27.67</td>
<td>7.48</td>
</tr>
<tr>
<td></td>
<td>HUM</td>
<td>Humboldtianum Basin</td>
<td>77.14</td>
<td>54.54</td>
</tr>
<tr>
<td></td>
<td>INA</td>
<td>Ina ('D-caldera')</td>
<td>5.29</td>
<td>18.65</td>
</tr>
<tr>
<td></td>
<td>ING</td>
<td>Ingenii</td>
<td>164.42</td>
<td>-35.48</td>
</tr>
<tr>
<td></td>
<td>LCT</td>
<td>Lichtenberg Crater</td>
<td>-67.23</td>
<td>31.65</td>
</tr>
<tr>
<td></td>
<td>FRG</td>
<td>Mare Frigoris</td>
<td>26.10</td>
<td>59.80</td>
</tr>
<tr>
<td></td>
<td>MOS</td>
<td>Mare Moscoviene</td>
<td>150.47</td>
<td>26.19</td>
</tr>
<tr>
<td></td>
<td>SMT</td>
<td>Mare Smythii</td>
<td>85.33</td>
<td>2.15</td>
</tr>
<tr>
<td></td>
<td>TRN</td>
<td>Mare Tranquillitatis</td>
<td>22.06</td>
<td>6.93</td>
</tr>
<tr>
<td></td>
<td>MAR</td>
<td>Marius Hills</td>
<td>-55.80</td>
<td>13.58</td>
</tr>
<tr>
<td></td>
<td>MEN</td>
<td>Mendel-Ryberg Cryptomare</td>
<td>-93.07</td>
<td>-51.14</td>
</tr>
<tr>
<td></td>
<td>PYR</td>
<td>Montes Pyrenaeus</td>
<td>40.81</td>
<td>-15.91</td>
</tr>
<tr>
<td></td>
<td>OR2</td>
<td>Orientale 2</td>
<td>-87.91</td>
<td>-18.04</td>
</tr>
<tr>
<td></td>
<td>PLT</td>
<td>Plato Ejecta</td>
<td>-5.21</td>
<td>53.37</td>
</tr>
<tr>
<td></td>
<td>RNG</td>
<td>Reiner Gamma</td>
<td>-58.56</td>
<td>7.53</td>
</tr>
<tr>
<td></td>
<td>RIC</td>
<td>Riccioli Crater</td>
<td>-74.28</td>
<td>-3.04</td>
</tr>
<tr>
<td></td>
<td>RMP</td>
<td>Rimae Prinz</td>
<td>-41.72</td>
<td>27.41</td>
</tr>
<tr>
<td></td>
<td>SCH</td>
<td>Schrödinger</td>
<td>138.77</td>
<td>-75.40</td>
</tr>
<tr>
<td></td>
<td>SPR</td>
<td>South Pole-Aitken Rim</td>
<td>170.92</td>
<td>-51.00</td>
</tr>
<tr>
<td></td>
<td>TSK</td>
<td>Tsiolkovskiy Crater</td>
<td>128.51</td>
<td>-19.35</td>
</tr>
<tr>
<td></td>
<td>VDG</td>
<td>Van De Graaf Crater</td>
<td>172.08</td>
<td>-26.92</td>
</tr>
</tbody>
</table>
LROC Master List of targets as of Nov. 10, 2009
(16,056 targets)
LEAG Workshop on Sustaining Lunar Exploration

♦ Purpose and Scope:
 • Learning from history is important for ensuring that a sustainable and long-term lunar return is possible
 • The Apollo program was not sustainable
 • Focus on the sustainability theme of the LEAG-coordinated Lunar Exploration Roadmap

♦ The remainder of this presentation will discuss those Cx regions of interest that support sustainability on the Moon:
 • Resources
 • Long-term habitation
Sustainability on the Moon
A historical perspective

“The human race is remarkably fortunate in having so near at hand a full-sized world with which to experiment: before we aim at the planets, we will have had a chance of perfecting our astronautical techniques on our own satellite. . .the conquest of the Moon will be the necessary and inevitable prelude to remoter and still more ambitious projects.”

“The crossing of interplanetary space, though a technical problem which will challenge all Man’s ingenuity and resources, is not an end in itself but merely a beginning. There is no point in going to the planets unless we do something when we get there.”

“Today we can no more predict what use mankind may make of the Moon than could Columbus have imagined the future of the continent he had discovered.”

“The first lunar explorers will probably be mainly interested in the mineral resources of their new world, and upon these its future will very largely depend.”

“For a considerable time all flights to the Moon would be directed to the same spot, so that material and stores could be accumulated where they would be most effective. There would be no scattering of resources over the Moon’s twelve million square miles of surface.”

(1951)
Constellation Polar Regions of Interest

South Pole

North Pole

Malapert Massif

South Pole

North Pole

Peary Crater

from Paul Spudis, Clementine mosaics
South Pole

Location (longitude, latitude): -130, -89.3 (best estimate, see image to left)

Scientific Rationale:
South Pole-Aiken (SPA) basin geology
Polar volatiles
Impact process (e.g., Shackleton and other craters)

Resource Potential:
Highlands regolith
Enhanced hydrogen in permanently shadowed polar craters (water ice?)
Sunlight

Operational Perspective:
Highlands terrain
Polar location
Areas of permanent shadow
Points of near-continuous sunlight

NASA References:
Exploration Systems Architecture Study (2005)
Geoscience and a Lunar Base (1990)

Other References:
Bussey et al., GRL, 26, no.9, 1187-1190 (1999)
Malapert Massif

Location (longitude, latitude): -2.93, -85.99 (best estimate, see image to left)

Scientific Rationale:
South Pole-Aitken (SPA) basin rim?
Basin geology
Observatories

Resource Potential:
Near-continuous sunlight (continuous?)
Direct-to-Earth communication

Operational Perspective:
Highlands terrain (e.g., massif)
Polar location

NASA References:
Spudis et al., GRL, 35, L14201, doi:10.1029/2008GL034468

Other References:
Spudis et al., GRL, 35, L14201, doi:10.1029/2008GL034468
North Pole

Location (longitude, latitude): 76.19, 89.60 (best estimate, see image to left)

Scientific Rationale:
Polar volatiles
Impact process (e.g., heavily cratered highlands)
Distal Imbrium ejecta

Resource Potential:
Highlands regolith
Enhanced hydrogen in nearby permanently shadowed polar craters (water ice?)
Sunlight

Operational Perspective:
Highlands terrain
Polar location
Nearby areas of permanent shadow
Points of near-continuous sunlight

NASA References:
Exploration Systems Architecture Study (2005)
Geoscience and a Lunar Base (1990)

Other References:

(Clementine uvvis color ratio image not available)
Peary Crater

Location (longitude, latitude): 30.00, 88.50

Scientific Rationale:
Polar volatiles
Impact process

Resource Potential:
Highlands regolith
Enhanced hydrogen in permanently shadowed polar craters (water ice?)

Operational Perspective:
Highlands terrain
Polar location
Areas of permanent shadow

NASA References:
Exploration Systems Architecture Study (2005)
Geoscience and a Lunar Base (1990)
LROC NAC Coverage of Constellation Polar Regions of Interest
(as of November 10, 2009)

Potential resources:

- Sunlight
- H₂ in permanent shadow
- H₂O and solar wind H₂ in lunar regolith
- O₂ and Al in lunar regolith
- Regolith as construction material

See presentations from earlier in the workshop for further details
Location of pyroclastic deposits on the Moon
(★ = Constellation Program region of interest)

from Lisa Gaddis, USGS Lunar Pyroclastic Volcanism Project
Aristarchus 2

Location (longitude, latitude): -52.40, 27.70

Scientific Rationale:
Pyroclastic materials
Nearby volcanic features

Resource Potential:
Pyroclastic materials

Operational Perspective:
Pyroclastic covered surface
Near side location

NASA References:
Exploration Systems Architecture Study (2005)
A Site Selection Strategy for a Lunar Outpost (1990)
Geoscience and a Lunar Base (1990)

Other References:
Rima Bode

Location (longitude, latitude): -3.80, 12.90

Scientific Rationale:
High-Ti pyroclastic material
Mantle xenoliths

Resource Potential:
High-Ti pyroclastic material

Operational Perspective:
Pyroclastic covered surface
Highlands terrain
Near side location

NASA References:
Exploration Systems Architecture Study (2005)
Geoscience and a Lunar Base (1990)

Other References:
Sulpicius Gallus

Location (longitude, latitude): 10.37, 19.87

Scientific Rationale:
Dark mantling material, pyroclastics
Mantle xenoliths

Resource Potential:
Pyroclastic deposits

Operational Perspective:
Smooth pyroclastic covered surface
Mare terrain
Near side location

NASA References:
Geoscience and a Lunar Base (1990)

Other References:
Lucchitta and Schmitt, 5th Lunar Conference (1974)
Alphonsus Crater

Location (longitude, latitude): -2.16, -12.56

Scientific Rationale:
Pryoclastic vents and materials
Lunar transient events
Alphonsus crater rim massifs
Ranger 9 impact site

Resource Potential:
Highlands regolith
Pyroclastic materials

Operational Perspective:
Highlands terrain
Pyroclastic covered surface
Surface fracture

NASA References:
Geoscience and a Lunar Base (1990)

Other References:
Schrödinger

Location (longitude, latitude): 138.77, -75.40

Scientific Rationale:
Pyroclastic materials
Mantle xenoliths
Schrödinger basin impact melts and breccias

Resource Potential:
Pyroclastic materials

Operational Perspective:
Pyroclastic covered surface
Far side location

NASA References:
Geoscience and a Lunar Base (1990)

Other References:
LROC NAC Coverage of Constellation Pyroclastic Regions of Interest
(as of November 5, 2009)
Cx ROI: Aristarchus 2
Simple Mosaic using NAC images: (left to right)
M104862583L
M104862583R
M102500639L
M102500639R

~10 km
Cx ROI: Aristarchus 2
NAC Images: M111945148R
LRO Altitude: 47 km
Resolution: 0.54 m/pixel
Constellation High-Fe or High-Ti Mare Regions of Interest

Clementine Iron Map of the Moon
Equal Area Projection

Flamsteed P
Mare Tranquillitatis
Mare Smythii
Mare Moscovienne
Flamsteed Crater

Location (longitude, latitude): -43.22, -2.45

Scientific Rationale:
Surveyor 1 site
Young basaltic lavas (Eratosthenian–Copernican?)
Thin regolith
Nearby Flamsteed P crater ring

Resource Potential:
High-Ti basalts

Operational Perspective:
Mare terrain
Near side location

NASA References:
Exploration Systems Architecture Study (2005)
Geoscience and a Lunar Base (1990)

Other References:
Mare Tranquillitatis

Location (longitude, latitude): 22.06, 6.93

Scientific Rationale:
High-Ti basaltic lavas
Volcanic processes
Wrinkle ridges, low basaltic shields

Resource Potential:
High-Ti mare regolith

Operational Perspective:
Mare terrain
Near side location

NASA References:
Exploration Systems Architecture Study (2005)

Other References:
Mare Smythii

Location (longitude, latitude): 85.33, 2.15

Scientific Rationale:
Young basaltic lavas
Nearby floor-fractured crater

Resource Potential:
High-Fe mare regoilth

Operational Perspective:
Mare terrain
Limb location

NASA References:
Exploration Systems Architecture Study (2005)
A Site Selection Strategy for a Lunar Outpost (1990)

Other References:
(Clementine uvvis color ratio image not available)
Mare Moscoviene

Location (longitude, latitude): 150.47, 26.19

Scientific Rationale:
Mare age and composition (e.g., far side mare)
Basin geology (e.g., inner ring)

Resource Potential:
High-Ti mare regolith

Operational Perspective:
Mare terrain
Highlands terrain
Far side location

NASA References:
Geoscience and a Lunar Base (1990)

Other References:
LROC NAC Coverage of Constellation High-Fe or High-Ti Mare Regions of Interest (as of November 6, 2009)

Flamsteed P

Mare Moscoviense

Mare Tranquillitatis

Mare Smythii
Rimae Prinz

Location (longitude, latitude): -41.72, 27.41

Scientific Rationale:
Rille
Possible lava tube
Nearby highlands massifs (Imbrium basin related)

Resource Potential:
Mare regoith

Operational Perspective:
Mare terrain
Sinuous rille (e.g., similar to Apollo 15 Hadley rille)
Near side location

NASA References:

Other References:
Rimae Prinz

Understanding Volcanic Processes

Determine how magma is generated and transported to the surface

Determine how lava flows are emplaced on the Moon

Apollo 15 metric frame M-2606

Artist concept of the discovery of a lunar lava tube
LROC NAC images acquired of Rimae Prinz region of interest (as of 10-20-09)
Simple Mosaic using NAC images: (left to right)
M102436231L
M102436231R
M102429075L
M102429075R

~10 km
Bandera Lava Tube
El Malpais National Monument
Grants, New Mexico

collapsed section

‘roofed’ section
opening into tube at end of collapse section
(courtesy of BLM)

opening into tube through a ‘skylight’
(courtesy of NPS)
Simple Mosaic using NAC images: (left to right)
M102436231L
M102436231R
M102429075L
M102429075R

The next five slides will focus on this area

~10 km
NAC Image: M102436231R
LRO Altitude: 146.18 km
Resolution: 1.47 m/pixel
NAC Image: M109507800L
LRO Altitude: 50.52 km
Resolution: 0.53 m/pixel

~5 m boulder
NAC Image: M109507800L
LRO Altitude: 50.52 km
Resolution: 0.53 m/pixel

~ 50 m crater
NAC Image: M109507800R
LRO Altitude: 50.52 km
Resolution: 0.53 m/pixel

Approximate Scale

0 500 m

~ 100 m crater

~ 10 m crater
NAC Image: M109507800R
LRO Altitude: 50.52 km
Resolution: 0.53 m/pixel
Simple Mosaic using NAC images: (left to right)
M109514603R
M109514603L

LRO altitude: 50.34 km
Resolution: 0.52 m/pixel
NAC Image: M109514603R
LRO Altitude: 50.34 km
Resolution: 0.52 m/pixel
Summary

♦ In coordination with the LROC team and the lunar science community, NASA’s Constellation program (CxP) has designated 50 regions of interest for LROC NAC imaging
 • As a set, they Illustrate the diversity of the lunar surface, and form a representative basis for scientific exploration, resource development, and mission operations
 • The 50 CxP regions of interest are a subset of over 16,000 LROC targets
 • The CxP regions of interest are getting excellent quality images and consistent imaging from the LROC NAC
 • The CxP regions of interest DO NOT represent the initial step in a site selection process for future human missions to the Moon

♦ Many of the CxP regions of interest support the sustainability theme of the LEAG-coordinated Lunar Exploration Roadmap
 • Resources
 • Long-term habitation

♦ Initial analysis has begun on the 50 CxP regions of interest
 • Much of the Aristarchus 2 ROI appears to be relatively boulder free at 1-meter scale
 • There are no apparent openings into one of the lava tube candidates at the Rimae Prinz ROI