Prospecting Rovers

Dale S. Boucher

Northern Centre for Advanced Technology Inc (NORCAT), Sudbury, Ontario, CANADA, P3A 4R7
Director Innovation, NORCAT Inc. 1545 Maley Dr., Sudbury, Ontario, CANADA, P3 A 4R7.
Mining Cycle

Exploration

Mining

Rehabilitation

Product

Refining

Photos Courtesy Falconbridge Nickel
ISRU Cycle (Space Mining)

Remote Survey → Resource Prospecting and Definition → Extraction Mining

Resource Prospecting and Definition → Processing → Beneficiation

Product → Waste
Lunar ISRU Operations Cycle

Global Resource Identification

Local Resource Exploration/Planning

Mining

Communication & Autonomy

Site Preparation

Product & Utilization

Crushing/Sizing/Beneficiation

Processing

Waste

Maintenance & Repair
Prospecting 101

• Exploration conducted in a step-wise fashion
 • progresses through stages, each of which moves closer to making a valuation of the ore body.
 • Geological reconnaissance and surface geochemical sampling prevail in the earliest stage.
 • geophysical surveys are typically conducted.
• Following surface exploration, the project moves into the drilling stage.
 • Drilling begins with a small number of exploratory drill holes on select targets
 • Drilling moves to extensive, close-spaced drilling (“development drilling”)
 • pending good results, “reserve drilling” is conducted, which is the type of drilling which makes the final assessment of the deposit before actual mining begins.
• Generally, some amount of drilling will continue throughout the life of the mine,
 • further definition is required
 • new information is obtained
 • used to refine the deposit model.
Prospecting 101

• Exploration Reconnaissance Stage
 • Start with surface bedrock mapping
 • Mapping and sampling
 • Identify and map outcrops, describe mineralization and alteration, measure structural features (geometry), and make geologic cross sections.
• Geochemical methods involve the collection and geochemical analysis of geological materials, including rocks, soils and stream sediments.
 • Results mapping and sampling may suggest patterns indicating the direction where an ore deposit could be present underground or at the surface.
• Geophysical methods focus on measuring physical characteristics (such as magnetism, density or conductivity) of rocks at or near the surface.
 • The measured values are then used to compare with the values and models of known ore deposits.
Prospecting 101

• value of an ore body (or “deposit”) requires determination of
 • “tonnage” (or volume)
 • determined by using drill data to outline the deposit in the subsurface, and by using geometric models to calculate the volume.
 • difficult to delineate because ore deposits often have irregular shapes.
 • “grade” (or concentration)
 • the average concentration determined from numerous assays of drill samples
 • can vary considerably within different parts of the same ore body.
Prospecting 101

• Development
 • extensive, close-spaced drilling
 • outlines the geometry of the deposit in great detail.
 • extensive testing to precisely determine grade of deposit and the “recovery”

• Feasibility
 • final stage before actual mining or extraction
 • actual mining or extraction method is proposed,
 • considers economic variables (commodity price, milling cost, transportation cost
 • decision is made whether to mine the deposit from the surface (“open-pit mining”), or to mine the deposit by tunneling (“underground mining”).
Prospecting 101
3 Dimensional Model from Fused TriDAR and GPR Data
Notional RLEP-2 Type Mission Path

Starting point
(simulated lander location)

- Drill Sites - Operate all Instruments; particularly
 - RESOLVE
 - VAPoR
 - Borehole XRF
 - Mossbauer/XRF on surface
 - CSA GPR

- Short Duration Instrument Stops - Operate
 - MMI
 - Cone Penetrometer
 - CSA Instruments

Image © 2009 DigitalGlobe
Notional ISRU Operations at a Lunar Outpost

- Regolith Excavation Area for O_2 Production
 - Crater Rim
 - Down to 0.3 m
 - 100 m
 - 500 m
 - 1000 m

- Spent Regolith Dumping Area
 - 100 m
 - 8000 m

- Water Excavation Area
 - Down to 0.75 m

- Spent Regolith Dumping Area
 - 15° Slope
 - 100 m

- Landing/Ascent Pad Area
 - 100 m

- ISRU Plant – O_2 or Water

- 500 m

- 1000 m

- 15° Slope

- 35 degree slope

- 15 degree slope

Model of Dawes Crater (Shackleton analog)
- 22 km diameter at rim - 2 km deep

- Houston Skyline

- Power Production Zone
- Observation Zone
- ISRU Plant (O_2 or Water)
- Spent Regolith Dumping Area
- Excavation Area for O_2 or Water
- Water Processing
- Landing Zone

- 200 m
- 100 m
- 200 m
- 100 m
- 200 m
- 200 m
- 200 m
- 100 m
- 100 m
- 100 m
- 100 m
Proper Tool for the Job

Utilization of extraterrestrial resources provides potential for unlimited range.
Proper Tool for the Job
Proper Tool for the Job

• Mining Mobility Chassis
 • Specifically designed for the environment
 • Specifically designed for the suite of tasks
In Situ Resource Utilization (ISRU)
Specific Common Carrier Chassis

- Mobility Chassis
 - Basic NORCAT ISRU chassis
 - No modifications required to change payloads
 - Utilizes interchangeable saddle design
In Situ Resource Utilization (ISRU) Specific Common Carrier Chassis