Global partnership between countries & agencies
ILEWG International Lunar Exploration Working Group

- Sponsored and members appointed by agencies, with support by experts
- To develop an International Strategy for the Exploration of the Moon
- Forum and mechanism for communication and co-ordination
- To implement international co-operation and report to COSPAR

- Website: http://sci.esa.int/ilewg
ILEWG Community events

- ILEWG Int’l Conferences on Exploration & Utilisation of the Moon
 ICEUM
 Beatenberg 94, Kyoto 96, Moscow 98, ESTEC 2000, Hawaii Nov 2003,
 Udaipur Nov 04, Toronto Sept 05, Beijing Jul 2006, Sorrento Oct 07,
 ICEUM10/LEAG/SRR Port Canaveral 27-31 Oct 08

- COSPAR: Washington 92, Hamburg 94, Nagoya 98, Warsaw 00,
 Houston 02, Paris 04, Beijing 06, Montreal 08, Bremen 10

- IAF/IAA: Houston 02, Bremen 03, Vancouver 04, Fukuoka 05, Valencia
 06, Hyderabad 07, Glasgow 08, Daejong 09

- EGS/EGU lunar sessions: Hamburg 95, Vienna 97, Nice 98, The Hague
 99, Nice 00 – 04, Vienna 05-06-07-08-09

- Website: http://sci.esa.int/ilewg
- Publications: 9 ICEUM proceedings + 7 books (Adv. Space Res.)
- Outreach: 18000 Google quotes
ILEWG Executive Bureau

- ILEWG President (2006-2008): Prof Wu Ji
- Executive Director: Prof Bernard Foing (Past-President 1998-2000)
- Past-President (2004-2006) Prof Narendra Bhandari
- Vice-President (2006-2008) Dr Simonetta di Pippo
- Vice-President (2006-2008) Dr Michael Wargo
- Past Presidents: H. Mizutani, E. Galimov, M. Duke, C. Pieters
- Founding agencies (1994): ASA, ASI, BNSC, CNES, DARA, ESA, ISAS, NASA, NASDA, RSA

• **Science of, on and from the Moon -> Scientific Knowledge**
 Pursue scientific activities that address fundamental questions about the history of Earth, the solar system and the universe - and about our place in them.

• **Technologies and Resource Utilisation -> New Technologies**
 Test technologies, systems, flight operations and exploration techniques to reduce the risks and prepare future missions to Moon, Mars and beyond.

• **Human Aspects, and Lunar Bases -> Human Civilization**
 Extend human presence to the Moon to enable eventual settlement.

• **Collaborative Roadmap & Moon-Mars Synergies -> Global Partnerships**
 Challenging, shared and peaceful activity that unites nations

• **Social, Economical Commercial, Societal Aspects -> Economic Expansion**
 Expand Earth’s economic sphere, and conduct activities with benefits to home

• **Education Public Outreach & Young Lunar Explorers -> Public Engagement**
 To engage the public and youth students, and help develop the high-tech workforce required to address the challenges of tomorrow.
Science: What processes shape Earth-like rocky planets?

Moon laboratory for Comparative planetology
Geophysics & Geochemistry

cratering, Impacts, volcanism, tectonics, erosion, volatiles

Hadley rille near Apollo 15 site (SMART-1)

Fresh Glushko crater (SMART-1)

Cassini crater Impacts and lava (SMART-1)

Prospector H map
Science of Moon: Formation and evolution of rocky planets

Origin of the Moon: geochemistry
Evolution of Earth/Moon system
Impact craters and bombardment history in the inner solar system
South Pole Aitken Basin
Large impact basins

SMART-1 X-ray Element fluorescence
SMART-1 Infrared mineral spectroscopy
Expanding life beyond Earth

- Bacteria and extremes of life: Survival, replication, mutation and evolution
- Extraterrestrial botanics: Growing plants on the Moon (tulips, mustard Arabidopsis, Tagetes Petula, ...)
- Animals: physiology and ethology on another planet
- Closed Ecological Life Support Systems
- Greenhouses, Local Food Production
- Living off the land
- Support to human exploration
- Permanent human presence
- Biospheres on the Moon
- Planetary and environment protection issues
- Protection of Earth life (Noah’s ark, DNA bank)
ILEWG Technology Task Group: What can be tested on the Moon?

- New technology and system level engineering demonstration
 - Remote sensing miniaturised instruments
 - Surface geophysical and geochemistry package
 - Instrument deployment and robotic arm
 - Close mobility, nano-rover, sampling, drilling
 - Regional mobility: rover, navigation

- Robotic laboratory
 - Mecha-electronics-sensors
 - Tele control, Telepresence, Virtual reality
 - Autonomy, Navigation,
 - Artificially intelligent robots
ILEWG Technology Task Group: What can be tested on the Moon?

• **In-Situ Utilisation of lunar resources**
 – Regolith, Oxygen, glasses, metals utilisation
 – Long term: He 3 extraction

• **Establishment of permanent lunar infrastructure**
 – Life sciences laboratories & Life support systems
 – Large astronomical facilities (VLF, interferometers)

• **Environmental protection aspects with humans**

• **Planetary protection validation for Mars**
Travelling, Living, Working, Settling: Elements for Human Moon/Mars Exploration

- Advanced Launch /access to space
- Orbital Infrastructure
- Crew Exploration Vehicle
- Transport/ communication
- Habitable Descent / Ascent Vehicle
- Surface Power Generation
- In-Situ Fuel Production
- Robotic outposts and rovers
- Habitation Modules
- Workshop
- Scientific Laboratories
- Greenhouse / Agriculture Module
- Medical Centre
- Pressurized Rover
- Advanced EVA Suit
- Life Support Systems
ICEUM/ILEWG: global village and international network

- **Udaipur 2004**: The participants endorse the ILEWG stepwise approach, starting with joint science analysis from ongoing precursor missions (Smart-1, Lunar-A, Selene, Chang’E, Chandrayaan-1, Lunar Reconnaissance Orbiter, Moonrise), continuing with lunar landers cooperating into an international **lunar robotic village before 2014**, evolving technologies for man-tended missions and preparing the ground for an effective, affordable human lunar exploration and **permanent presence by 2024**.

- **Toronto 2005**: We advocate **robotic engineering precursors** for geophysical characterization, life sciences, in-situ resource utilization and the deployment of infrastructures in preparation for human-tended operations.

- **Beijing 2006**: Recognizing the importance of the **geophysical studies of the interior of the Moon** for understanding its formation and evolution, the necessity for a better monitoring of all natural hazards (radiation, meteorites impacts and shallow moonquakes) on the surface, and the series of landers planned by agencies in the period 2010-2015 as an unique opportunity for setting up a **geophysical network on the Moon**, we recommend the creation of an international scientific working group for definition of a common standard for future Moon network instruments, in a way comparable to Earth seismology and magnetism networks.

- **Sorrento 2007**: We need now to exchange information and coordinate the studies of national lunar missions that could lead to **complementary elements of a global robotic village**
Lunar science and exploration missions

- Data analysis & Interpretation
- Science and Technology Lessons Learned
- Preparation for human lunar missions

International collaborations

2003 SMART-1 mission and exploitation
2007 JAXA Selene Kaguya (science exchange)
2007 Chinese Chang’e 1 (ground station)
2008 ISRO Chandrayaan-1 (ESA SIR2, C1XS, SARA; NASA M3, miniS.)
2009 LRO & LCROSS (planning, impact, outreach)
2011- Orbiters (GRAIL+LADEE, LEO, ESMO, BW, ASI)
2011- Landers, Rovers & Robotic village (GLXP, Chang’e2, Selene2, India, Lunaglob, UK Moon Lite)
2013-2016 International Lunar Network, ESA Moon-NEXT
2017- ESA Logistics lander, **Sample return:** Chang’e 3, Selene3
2019- Human missions
Sorrento lunar declaration (sci.esa.int/ilewg)

- 9th ILEWG Conference on Exploration and Utilisation of the Moon (ICEUM9)
- >250 participants, time STS120 launch & docking
- SMART-1, Kaguya, launch of Chang'E 1
- Preparation Chandrayaan-1, LRO/LCROSS
- Space Agencies Exploration Coordination Group to benefit from ILEWG
- Integration and analysis of data and results from historical and new missions
- Cooperation at all levels (agency, mission, instrument, science, subsystem, ops)
- Outstanding lunar science questions remaining
- ICEUM unique gatherings, moving to a workshop mode
- More emphasis on the human aspects
- Lunar data dissemination via modern free web-based
- Establish an informal ILEWG Lunar Surface Operations Working Group
- Support Young Lunar Explorers and student lunar projects
- Initiate discussion (political and legal) on exploration and the use of the Moon
- Lunar Odyssey: engage the public (and youth) in science and technology
- Science analysis of current precursor robotic missions, to the global robotic village, and the preparation of international human settlements on the Moon.
Other ILEWG related events:

- 14-18 Jul. 08 COSPAR B0.1 Moon session, Montreal
- 15-18 Sep. Moon and beyond III, DGLR, Bremen
- 22-26 Sep. Europlanet Conference, Munster
- 29 Sep-3 Oct IAC Space Exploration Symposium, Glasgow
- 27-31 Oct 10th ILEWG conference on Exploration and Utilisation of the Moon
 – Port Canaveral Florida, ILEWG/NASA LEAG/Space Resources Roundtable
- 20-24 April 09 European Geoscience Union, Vienna
- 13-18 Sep. 09 Europlanet Conference, Potsdam
- 12-16 Oct 2009 IAC Space Exploration Symposium, Korea
- 2009 11th ILEWG CEUM
- May 2010 IAF Global Lunar Conference, Beijing
- COSPAR2010 Moon science and exploration symposium, incl. session on International Lunar Base (COSPAR B, F, PEX, ILEWG), Bremen
ILEWG ROAD MAP TO THE MOON VILLAGE, MARS AND BEYOND

(Europe, robotic, life sciences/Manned)

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>Chang’E 1 orbiter II</td>
</tr>
<tr>
<td>2011</td>
<td>GRAIL+LADEE, Phobos Grunt</td>
</tr>
<tr>
<td>2012</td>
<td>LEO, Chang’e 2, Moon-LITE, Selene-2, Chandrayaan2 lander</td>
</tr>
<tr>
<td>2013</td>
<td>IL Network, Maggia, ESMO, ExoMars, Mars Scout</td>
</tr>
<tr>
<td>2014</td>
<td>Intl Lunar Robotic Global Village Scouts?</td>
</tr>
<tr>
<td>2015</td>
<td>CEV Crew Exploration Vehicle, ACTS</td>
</tr>
<tr>
<td>2016</td>
<td>ILN, Moon-NEXT point land, life sciences, biology lab Mars-NEXT</td>
</tr>
<tr>
<td>2018</td>
<td>ESA Logistics lander demo, Chang’E 3 sample return Astrobiology Field Lab?</td>
</tr>
</tbody>
</table>

International Lunar Exploration Base and Mars Exploration

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019</td>
<td>Chinese mission to the Moon?</td>
</tr>
<tr>
<td>2020</td>
<td>ESA Logistics lander, US human on Moon</td>
</tr>
<tr>
<td>2021</td>
<td>Early Earth Sample Return?, European, Indian, Japanese on the Moon? Lab, Infrastructures, energy, ISRU, greenhouse</td>
</tr>
<tr>
<td>2022</td>
<td>EMCRV Crew Return Vehicle? Mars Sample Return</td>
</tr>
<tr>
<td>2023</td>
<td>Long Term Lunar Base >2030 Humans to NEO/Phobos</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>