Lunar Concrete
A Means to Reduce the Dust Hazard

Jeffrey C. Boulware
PhD Candidate
Mechanical & Aerospace Engineering
Utah State University

Franklin Angomás
MS Candidate
Civil & Environmental Engineering
Utah State University
Lunar Concrete

- Use in situ resources to create a paved lunar playground
- Attainable achievement which greatly aids lunar exploration
- A flat, smooth lunar surface will...
 - Eliminate lunar topsoil
 - Aid landing operations
 - Aid surface operations
 - Increase geological data

- Production capability proven with Apollo samples
- Structural / construction constraints very flexible
- Able to be feasibly integrated with current architecture
Advantages of Concrete

- Economic
 - Less energy required for formation
- Compartmentalization
 - Can be molded into any shape
- Thermal strength
 - Can survive high and low temperatures
- Radiation shielding
 - Excellent barrier
- Abrasion resistant
 - Protects from micrometeorite debris
- Vacuum resistant
 - High environmental tolerability
Water vs. Sulfur?

- Concrete is...
 - Aggregate + Cement (15%) + Water (7%)
 - Aggregate + Sulfur (35%)

<table>
<thead>
<tr>
<th></th>
<th>Water based concrete</th>
<th>Sulfur based concrete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minerals</td>
<td>Ilmenite, Ice</td>
<td>Troilite, SO₂, H₂S</td>
</tr>
<tr>
<td>Supply</td>
<td>Medium- High</td>
<td>Low</td>
</tr>
<tr>
<td>Required</td>
<td>Low</td>
<td>Moderate- High</td>
</tr>
<tr>
<td>Outside Demand</td>
<td>Very High</td>
<td>Low</td>
</tr>
<tr>
<td>Architecture Integration</td>
<td>Easy</td>
<td>Moderate</td>
</tr>
</tbody>
</table>

- Both designs could lead to spin-off technologies for Earth-based construction in dry regions
Performance

<table>
<thead>
<tr>
<th></th>
<th>Using Lunar soil and alumina cement</th>
<th>Earth materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressive Strength</td>
<td>10.9 ksi</td>
<td>7.96 ksi</td>
</tr>
<tr>
<td>Static Modulus of Elasticity</td>
<td>1100 ksi</td>
<td>1800 ksi</td>
</tr>
<tr>
<td>Dynamic Modulus of Elasticity</td>
<td>3120 ksi</td>
<td>2810 ksi</td>
</tr>
<tr>
<td>Poisson’s ration at Peak Load</td>
<td>0.39</td>
<td>0.27</td>
</tr>
<tr>
<td>Modulus of Rupture</td>
<td>1.21 ksi</td>
<td>1.24 ksi</td>
</tr>
<tr>
<td>Coefficient of Thermal Expansion</td>
<td>$2.9 \times 10^{-6} / ^\circ F$</td>
<td>$3.5 \times 10^{-6} / ^\circ F$</td>
</tr>
</tbody>
</table>

Data from Lin, Construction Technology Laboratories, 1986

- Lunar based concrete is comparable to Earth based concrete
 - True for water and sulfur mixtures
- More than adequate for paving
 - Reinforcing glass fibers may be required for large structures
Architecture Integration

- ISRU Rover Tools:
 - Excavator
 - Collector
 - Grinder
 - Filter
 - Processor
 - Separator
 - Storage
 - Ejector

- Additional tools for concrete capability:
 - Mixer
 - Layer / Sprayer
 - Curer
Research Pathway

- **PAST**
 - Apollo proved need for dust suppression
 - Post-Apollo proved concrete capability

- **PRESENT**
 - Applied concrete research
 - Integrate ISRU research
 - Increase geological data
 - Significantly aid Constellation

- **FUTURE**
 - Large playground
 - Launch pad barrier
 - Inflatable structure cover
 - Pressurized structure
 - Stepping stone to Mars
Challenges

- Adequate material availability?
- Appropriate processing method?
- Sufficient production rate?
- Enough operational payback?
- Amount of future infrastructure required?