A STUDY OF GARDENING IN THE LUNAR REGOLITH USING 53Mn,

K. Nishiizumi, M. Imamura, M. Honda, University of Tokyo, Tokyo, Japan; M. T. Murrell, J. R. Arnold, Dept. of Chemistry, Univ. of Calif., San Diego, La Jolla, California.

53Mn ($t_{1/2} = 3.7$ m.y.) activities have been determined in samples from the upper 48 g/cm2 of the Apollo 16 drive tube 60010. 53Mn activities were also measured in the 18 to 37 g/cm2 region of the Apollo 15 and Apollo 16 deep drill stems. These new data along with previous work (1, 2, 3, 4) are intended to determine the depositional histories of specific lunar sites and the distribution of such histories on the time scale measurable by 53Mn.

The double core tube used to collect 60010 has been shown by Carrier et al. (5) to induce considerably less disturbance in sampling than some earlier core tubes; in addition, the 22Na data of Fruchter et al. (6) suggest that 60010 was not disturbed during sampling and subsequent handling. The 53Mn profile for 60010 (Fig. 1) suggests gardening to a depth of 7 g/cm2 in the last ~7 m.y. The depth integrated 53Mn activity to 7 g/cm2, excluding sample #232 in the 3.8-4.8 g/cm2 region, is 11% over that calculated by Reedy and Arnold (7). This excess suggests addition of solar cosmic ray (SCR) exposed material to this site within the last ~10 m.y., perhaps as the result of the filling of a small crater. The surface samples from the top 1 g/cm2 of 60010 were measured at 0.2 g/cm2 intervals. The improved depth resolution shows a slight decrease in the 53Mn activity at the surface; this low activity implies gardening in the 1 g/cm2 region within the last 2 m.y. A slight decrease in the 53Mn activity in the 1-3 g/cm2 region is a common feature in the sites studied by our group (Fig. 2); this result is in good agreement with the 26Al data of Fruchter et al. (6). They conclude that substantial mixing through at least the 4-6 g/cm2 region on a million year time scale is a common process on the lunar surface.

The samples from 60010 contain on the average 4.3% Fe, 31 ppm Co, and 0.05% Ni; however, 60010,232 from the 3.8-4.8 g/cm2 region contains 6.7% Fe, 210 ppm Co, and 0.32% Ni. This suggests that this section of the core contains meteoritic materials which are probably metallic fragments. The chemical excess in sample #232 normalized to 100% Fe, Co, and Ni yields Fe = 89%, Co = 0.69%, and Ni = 10%. This result is in adequate agreement with the chemical composition of a 1 mm shiny metallic fragment found in 60010,40 from the 5.7-8.6 g/cm2 region. This fragment was determined by Ali and Ehmann (8) to contain Fe = 93.2%, Co = 0.363%, and Ni = 6.41% normalized to 100% Fe, Co, and Ni. Our sample #228 in the 5.7-6.7 g/cm2 region (the same depth region which contained their metal fragment) showed no such chemical excess. The higher Co and Ni content of the material in our sample #232 might be due to an admixture of taenite. The 53Mn activity of 514 dpm/kg Fe found in sample #232 is much greater than the expected value of ~410 dpm/kg Fe estimated by interpolation from the adjacent samples. The 53Mn activity due to the meteoritic component is calculated to be ~700 dpm/kg Fe; this high activity requires the meteoritic fragments to be surface material from a recent impact event. The SCR produced 53Mn activity within the first 0.5 mm of a meteorite is calculated to be ~1000 dpm 53Mn/kg Fe; assuming the fragments had this...
A Study of Gardening in the Lunar Regolith Using 53Mn.

K. Nishizumi, et al.

value, the meteorite fell within the last 2 m.y. Measuring individual grains in the 4-10 g/cm2 section of this core should produce new information concerning this meteoritic material; we plan to do so.

In our previous 53Mn work (3), we concluded that the Apollo 16 drill stem, 60007, had been gardened to $>$14 g/cm2 in the last \approx10 m.y. Our recent 53Mn measurements in the 18 to 37 g/cm2 region of this core now indicate gardening to $>$19 g/cm2 within the last \approx12 m.y. (Fig. 1). The depth integrated activity to 19 g/cm2 is 50% over that calculated by Reedy and Arnold (7). 53Mn measured in the 25 g/cm2 section is at the predicted activity level and therefore shows no evidence of additions of near surface material to this depth on a time scale measurable by 53Mn.

The Reedy-Arnold (7) theoretical production rate for 53Mn as a function of depth indicates that the saturation activity should be nearly constant between 20 and 100 g/cm2. We have previously renormalized the theoretical galactic cosmic ray (GCR) curve for 53Mn in the lunar soil to the values obtained in this depth interval (4). Fourteen points in the 20 to 100 g/cm2 region from four cores have been measured to date (Fig. 2). These cores have been gardened to various depths, and in at least one case, material was lost during sampling and subsequent handling; however, the theoretical renormalized GCR curve fits nicely all points in the 20 to 100 g/cm2 region.

The impact gardening model of Arnold (9) predicts a typical disturbance depth on the order of 10-20 g/cm2 over the mean life of 53Mn; this is in agreement with our data. Based on this model, a gardened profile for the moon-wide average of 53Mn as a function of depth has been derived. Of the four cores studied by our group, 12025, 60007, and 60010 fall above this new curve. Because of suspected loss of 3-4 g/cm2 of material from the surface of 15006 (6), it is difficult to predict whether the integrated 53Mn activity would be high or low; however, even allowing for the loss, the data for this core lie below the gardened profile. 53Mn measurements in more cores are required to test the accuracy of the average gardened profile.

References:

A Study of Gardening in the Lunar Regolith Using ^{53}Mn.

K. Nishiizumi, et al.

Figure 1.

Figure 2.

(60010 and circled numbers measured in this work.)