LABORATORY TRACE ELEMENT PARTITIONING STUDIES RELEVANT TO 244Pu-
RARE EARTH CHRONOLOGY. J.H. Jones, R. Heuser, D.S. Burnett and G.J. Fine,
Div. of Geol. & Plan. Sci., Calif. Inst. of Technology, Pasadena CA 91125

Because only one plutonium isotope survived the time interval between
nucleo-synthesis and meteorite formation, 244Pu abundances in meteorites
depend on both chemistry and time. Thus, a useful 244Pu chronology requires
that early solar system Pu chemistry be understood. Clinopyroxene and Ca-
phosphate mineral separates from Angra dos Reis (AdoR) were found to have the
same Pu/Nd ratio, whereas the Pu/U and Pu/Th ratios varied (1,2). The
observed coherence of Pu with Nd rather than the other actinide elements
undoubtedly reflects the presence of trivalent Pu as opposed to tetravalent
U and Th (3,4,5) for the reducing conditions under which meteorites formed.

We report laboratory crystal-liquid partitioning studies testing the degree
of chemical coherence of Pu and a typical rare earth element (Sm).

Crystals of diopside clinopyroxene or Ca-phosphate were grown at 1 bar
pressure from melts of \(\sim\)Ab\(_{20}\)An\(_{30}\)Di\(_{60}\)Ca\(_2\)(PO\(_4\))\(_2\) (4,5)
in Pt capsules. Co-CoO buffers provide \(f_\text{O}_2 = 10^{-10} \) bar. Pu and 151Sm, present at trace
levels, were analyzed by fission and beta track radiography (4,5). Clin-
opyroxene. Our techniques require large (>30-40 microns) crystals for quanti-
tative analysis; consequently our standard thermal history has been single-
stage linear cooling (few deg/hr) from about 10° above the liquidus to -60°
below (-1210°C for cpx). Crystals do not re-equilibrate with the liquid at
lower temperatures; however, valid D values are still obtained if crystal
growth is slow enough for the liquid to remain homogeneous (i.e. equilibrium
is maintained at the crystal-liquid interface). Nine crystals from 3 differ-
ent single-stage runs give a well-defined Sm partition coefficient \(D_{\text{Sm}}(\text{cpx}) = 0.352 \pm 0.018 \). The 5% standard deviation of the data points is consistent
with counting statistics (6). However, because experiments in graphite
capsules showed a strong tendency to supercool (7), we adopted an alternate,
"self-seeding, two-stage" thermal history designed to minimize supercooling
and to check the D values from our standard thermal history. Samples were
dropped from above the liquidus to 5-10° below and held for ~15 hr.

Tests confirmed (3 of 3 cases) that small crystals were produced in this
way. Subsequent to the 15 hr. seeding period, slow cooling was initiated,
ending at the same final temperature as our standard runs. The mean \(D_{\text{Sm}}(\text{cpx}) \)
of 16 crystals from 3 two-stage runs is 0.325 which, although not largely
different, is still 4 \(\sigma_{\text{mean}} \) lower than the result from the single-stage
runs. This difference probably indicates supercooling in our single-stage
experiments, but it cannot be concluded that the D values are higher because
of kinetic disequilibrium due to too rapid crystal growth. This is because,
in the presence of a seed, crystal growth occurs over a wider temperature
interval, and the \(D_{\text{Sm}} \) from the two-stage runs may represent higher effective
temperatures. This latter interpretation better explains the larger observed
spread in \(D_{\text{Sm}} \) from the two stage runs (standard deviation=17%, over 4 times
estimated counting statistics and twice the total range expected from frac-
tional crystallization). However, one two-stage sample has inhomogeneous
(~15%) glass Al concentrations and Al gradients in the glass at some

Tests confirmed (3 of 3 cases) that small crystals were produced in this
way. Subsequent to the 15 hr. seeding period, slow cooling was initiated,
ending at the same final temperature as our standard runs. The mean \(D_{\text{Sm}}(\text{cpx}) \)
of 16 crystals from 3 two-stage runs is 0.325 which, although not largely
different, is still 4 \(\sigma_{\text{mean}} \) lower than the result from the single-stage
runs. This difference probably indicates supercooling in our single-stage
experiments, but it cannot be concluded that the D values are higher because
of kinetic disequilibrium due to too rapid crystal growth. This is because,
in the presence of a seed, crystal growth occurs over a wider temperature
interval, and the \(D_{\text{Sm}} \) from the two-stage runs may represent higher effective
temperatures. This latter interpretation better explains the larger observed
spread in \(D_{\text{Sm}} \) from the two stage runs (standard deviation=17%, over 4 times
estimated counting statistics and twice the total range expected from frac-
tional crystallization). However, one two-stage sample has inhomogeneous
(~15%) glass Al concentrations and Al gradients in the glass at some
crystal edges showing that even the presence of a seed crystal does not
prevent local supercooling. Consequently, we believe the variations in
\(D_{\text{Sm}}(\text{cpx}) \) represent both the temperature variation of D due to crystal
nucleation and growth at different temperatures and some contribution from rapid

crystal growth. The variations in \(D_{\text{Sm}}(\text{cpx}) \) correlate with \(D_{\text{Al}}(\text{cpx}) \) and
\(D_{\text{Pu}}(\text{cpx}) \) (figures 1 and 2). In figure 1, the point marked with an arrow comes
from a crystal showing strong Al zoning and, within positional uncertainties,
could lie on the main trend; the anomalous point in the upper left does not

© Lunar and Planetary Institute • Provided by the NASA Astrophysics Data System
Pu–Rare Earth Chronology

J. H. Jones et al.

have a reproducible \(D_{\text{Sm}} \) and a reanalysis (plotted at same \(D_{\text{Al}} \)) was much lower. The correlations of \(D_{\text{Sm}} \) and \(D_{\text{Pu}} \) (fig. 2, open symbols) are such that \(D_{\text{Sm}}/D_{\text{Pu}} \) stays constant at 1.9. This constancy would not be expected for kinetic disequilibrium, and the range in \(D \) is 2–3 times larger than can be explained entirely by fractional crystallization. The correlations in figs. 1 and 2 probably reflect primarily the temperature dependence of \(D_{\text{Pu}} \) and \(D_{\text{Sm}} \) with some contribution from fractional crystallization and kinetic disequilibrium. The data provide a well defined \(D_{\text{Sm}}/D_{\text{Pu}}=1.9\pm0.1 \) with the lower \(D \) values being our best estimate for equilibrium values at \(\sim1250^\circ \text{C} \). Correcting for fractional crystallization would give \(D_{\text{Sm}}=0.31 \) and \(D_{\text{Pu}}=0.17 \). Using \(D_{\text{Nd}}/D_{\text{Sm}}=0.78 \) (8), we obtain \(D_{\text{Pu}}/D_{\text{Nd}}=0.68 \). Effect of melt composition (phosphorus) on cpx partitioning. Our absolute \(D \) values apply only to the compositions and temperatures of our experiments; however, in many applications the relative \(D \) values for Pu and RE are more important. These will be less variable, but it is still important to test experimentally the constancy of \(D_{\text{Sm}}/D_{\text{Pu}} \). Addition of P causes an order of magnitude decrease to \(D_{\text{PM}}(\text{cpx}) \) for U and Th (4,5) and also has the advantage that the system composition can be changed without appreciable effect on the crystal composition. The liquidus temperatures of the P-free and P-bearing systems do not differ appreciably and cpx remains the liquidus phase. The results for the P-bearing samples (dark symbols on figure 2) also show a correlation between \(D_{\text{Sm}} \) and \(D_{\text{Pu}} \) but, because \(D_{\text{Pu}} \) is lowered more than \(D_{\text{Sm}} \), \(D_{\text{Sm}}/D_{\text{Pu}}=2.6 \) compared to 1.9 for the P-free systems. This could be due to: [1] an appreciable fraction of \(\text{Pu}^{4+} \) in the \(F_0=10^{-9} \) experiments; [2] a change in the \(\text{Pu}^{3+}/\text{Pu}^{4+} \) ratio with composition; [3] melt complexing effects which recognize differences between trivalent actinides and rare-earths; [4] a change in the rare earth (and \(\text{Pu}^{3+} \)) partition coefficient pattern with composition. Alternative [1] is unlikely in view of the experiments discussed below. Alternative [4] is possible because, although cpx partition coefficient patterns for rare earths are similar, the relative \(D \) values are not constant based on phenocrystal-matrix measurements (9). Experiments are in progress to obtain \(D_{\text{Ce}} \) and \(D_{\text{Yb}} \) for our P-rich composition. \(D_{\text{Pu}}(\text{cpx}) \) for very reducing conditions. Our previous work has shown that there are large increases in \(D_{\text{Pu}} \) between \(F_0=0.2 \) and \(10^{-9} \) bar (1250°C), which can be ascribed to the importance of \(\text{Pu}^{3+} \) at the lower \(F_0 \); however, partitioning data do not give direct, quantitative information on \(\text{Pu}^{3+}/\text{Pu}^{4+} \). Furthermore, the applicability of our data to meteorites and lunar samples is compromised if significant \(\text{Pu}^{4+} \) remains, because these materials formed under more reducing conditions. Experiments were carried out with the P-free composition in graphite crucibles in evacuated \(\text{SiO}_2 \) glass (\(F_0=10^{-12} \) bar), but, to avoid supercooling problems with graphite (7), seed crystals of natural diopside were added. Large (>100 micron) crystals were obtained, both planar overgrowths and independent nucleation from the seeds. Four crystals from 2 runs give \(D_{\text{Pu}}=0.15-0.20 \), in good agreement with the range for P-free samples on fig. 2 although 1 anomalous crystal gives 0.11. Thus, there is no change in \(D_{\text{Pu}} \) from \(F_0=10^{-9} \) to \(F_0=10^{-12} \) bar, almost certainly indicating that Pu was mostly trivalent for our \(10^{-9} \) bar experiments. Within the errors, 10–20% Pu could still be present at \(F_0=10^{-9} \) bar; but it appears impossible that \(D \) for \(\text{Pu}^{3+} \) and \(\text{Nd} \) could be equal for our experiments. Ca-phosphate partitioning. \(D_{\text{Sm}} \) and \(D_{\text{Pu}} \) for Ca-phosphate (whitlockite) are plotted on figure 3. Unlike the \(D(\text{cpx}) \) data, the variations for both elements fall within the range possible for fractional crystallization, as shown by the dashed curve. Only data from single-stage cooling histories are shown, because of difficulties in buffering for the longer two-stage runs. Fractional crystallization (zoning)
corrections are large since both D's are much greater than 1. Our best estimates are $D_{Pu}(Ca-phos)=4$ and $D_{Sm}(Ca-phos)=6$.

Discussion. The present results are consistent with the conclusions drawn in our previous LSC abstracts, based on less complete data. To the extent that the D values are not equal, our results do not support the concept of Pu-Nd chronology. However, because the D values are small, many petrogenetic processes would leave Pu and Nd approximately unfractiionated. Moreover, because we have shown that D_{Pu}/D_{Sm} varies significantly with changes in bulk composition, D_{Pu}/D_{Nd} may be closer to 1 for other compositions. In terms of ionic radius, Pu^{+3} lies between Ce and Pr and, within errors, $D_{Ca}=D_{Pu}$ for cpx. Thus a Pu/Ce chronology has advantages, but use of Pu/Nd is attractive in terms of chronological studies involving several parent-daughter systems. We are cautiously optimistic about the prospects of Pu-RE relative meteorite ages, e.g. on achondritic clasts. At present, however, such measurements (on whole rock samples) require additional chemical data; light RE, U and Th abundances, for proper interpretation (4,5).