HOW MUCH XENON IN SHALES?
L. L. Oliver and O. K. Manuel
Chemistry Department, University of Missouri, Rolla, MO 65401

Several years ago it was reported that the heavy noble gases are selectively enriched in shales and that some shales contain more Xe than even the most gas-rich meteorites [1]. It was suggested that the anomalously low Xe/Kr ratio in air would increase to approximately the value observed in chondrites if the noble gases in shales were added to those in air [1]. The trapping of noble gases in sediments may also play a role in determining the atmospheric abundance pattern of these elements for other terrestrial planets [2], especially if the surface temperature is low, e.g., Mars.

Average concentrations of 132Xe = 2.46 x 10^{-8} ccSTP/g and 2.67 x 10^{-8} cc STP/g were reported in the initial study of noble gases in several samples of the Fig Tree and Mt. Vernon shales, respectively [1]. A later analysis of noble gases in Fig Tree shale yielded a 132Xe concentration of 0.15 x 10^{-8} cc STP/g [3], but 132Xe concentrations of 2.1 x 10^{-8} cc STP/g and 13.2 x 10^{-8} cc STP/g were reported in two samples of shale from Kuruman, Cape Province, South Africa [3]. However, a more recent report on noble gases in a variety of shales gives 132Xe concentrations of only (0.004-0.569) x 10^{-8} cc STP/g and notes that the data do not support the suggestion that the Xe deficiency in air can be made up by the Xe inventory of sedimentary rocks [4]. It was reported that the samples analyzed in this latest study were "heated overnight to -150°C under vacuum during preliminary extraction system preparation" [4].

We have investigated the effects of sample heating prior to the collection of gases for analysis in accounting for the 3 order of magnitude variation in the Xe contents of terrestrial shales. The results of our analyses confirm the high Xe concentrations initially reported in Fig Tree shale [1].

Gases were extracted from samples of Fig Tree shale that had been exposed to a variety of preheating procedures. Stepwise heating was used for gas extraction. The 200°C fraction of gases released from a sample previously heated to 150±5°C for 12.00 hrs contained only 9% of the Kr and 19% of the Xe that was released from another sample that had not been preheated. However,
the total Kr and Xe concentrations of the preheated sample were 73% and 83%, respectively, of those in the sample that had not been preheated. Thus carefully controlled preheating of this shale to 150°C for 12 hrs cannot account for the wide range of Xe concentrations reported in shales.

The results of our stepwise heating experiments on Fig Tree shale revealed that 83% of the Kr and 57% of the Xe were released at extraction temperatures of $T < 400°C$. Thus, the loss of an appreciable fraction of these two heavy noble gases from Fig Tree shale might occur if the preheating temperature exceeded 150°C.

The fraction of Xe lost during preheating might also be expected to depend on the nature of the sample and the Xe sites. Kuroda and coworkers have reported that 74% of the total 132Xe content of Wausau granite was released at an extraction temperature of 200°C [5] and that 84% of the total 132Xe content of thucholite was released at an extraction temperature of 250°C [6]. It is therefore premature to interpret the low Xe contents of the recent study on shales [4] as evidence that the terrestial noble gas inventory contains an exotic depletion of Xe, particularly at a time when so little is known about the fraction of Xe lost when the samples were preheated.

REFERENCES: