The $^3\text{He}/^\text{Ar}$, $^{20}\text{Ne}/^\text{Ar}$, and $^{36}\text{Ar}/^{132}\text{Xe}$ ratios of some glassy submarine basalts are higher than the planetary ratios. Although these ratios are easily modified by various processes in the mantle and oceanic crust, it is possible to estimate the extent of modification by the $^4\text{He}/^\text{Ar}$ ratio. For an Earth with K/U ratio of 1.27×10^4, the $^4\text{He}/^\text{Ar}$ ratio for equilibrium decay is constrained to the range $1.40 - 1.73$. Ratios lower than this designate samples contaminated by atmospheric noble gas and ratios higher than this designated samples subjected to mass fractionation process such as expected during volatile exsolution from silicate melts. A positive correlation between $^3\text{He}/^\text{Ar}$ and $^4\text{He}/^\text{Ar}$ for 45 submarine glasses enables determination of the bulk earth $^3\text{He}/^\text{Ar} = 0.01 - 0.03$ corresponding to the closed system $^4\text{He}/^\text{Ar}$ ratio $= 1.40 - 1.73$. Thus the $^3\text{He}/^\text{Ar}$ ratio of the bulk earth is intermediate between planetary and solar ratios. The $^{20}\text{Ne}/^\text{Ar}$, $^{36}\text{Ar}/^{132}\text{Xe}$ ratios of samples with non-fractionated $^4\text{He}/^\text{Ar}$ ratios are also intermediate between planetary and solar ratios. Thus, it seems plausible Earth noble gases are a mixture of solar wind and "planetary" gases. This is expected if the Earth accreted from the silicate particles that absorbed ambient Earth orbit nebulae gases while bombarded by noble gases in the solar wind.