OLIVINE IN LUNAR DUNITE 72415, A RATHER SHALLOW-ORIGIN CUMULATE.

Graham Ryder, Lunar and Planetary Institute, 3303 NASA Rd. 1, Houston, TX 77058; and Institut für Mineralogie, Universität Münster, W. Germany.

Early studies of dunite 72415 and its sister fragments lead to the conclusion that the sample was the brecciated relic of a deep-seated plutonic cumulate, formed during a primordial differentiation [1,2,3]. Further, it was proposed that troctolite 76535 could be related to it by fractional crystallization of a common magma. The present study shows that 72415 is probably neither deep-plutonic nor closely related to 76535.

Dymek et al. [2] stated that 72415 olivine has a "very restricted range in composition (Fo 86-89)" with no systematic variation, and that minor elements are like those in other plutonic rocks. In reality however, the range of Fo 86-89 also shown in [4], is a) wider than expected from analytical error for a single composition b) wider than that analyzed for 76535 in the same study and c) apparently wider than the range in single terrestrial plutonic samples. Also, the calcium content (0.13 % CaO) appears high. The present study of detailed microprobe analyses of 72415 olivines was undertaken to 1) evaluate the reality of the olivine compositional range and how it varies within the sample 2) analyze precisely for CaO as a constraint on petrogenesis 3) compare with terrestrial and other plutonic olivines and constrain the origin of 72415.

Major element variation was determined by analyses for FeO in the dunite and other olivines (Fig. 1), avoiding symplectites and other inclusions. The total range for the dunite is much wider than for replicate analyses on Marjalahti, hence is real, and for multiple point analyses of Stillwater (ultramafic zone) olivines. The variation is not random: the two largest grains in the thin section (5 mm and 2 mm across) are continuously zoned by 3.6% FeO (almost 2 mol % Fo) and 1.1% FeO (<1 mol % Fo) respectively; the latter shows an abrupt transition in one place from 11.7% to 11.2% FeO (Fig. 2). Terrestrial deep plutonic olivines are zoned only at their outer rims or where in subsolidus reaction with chromite; neither is the case for 72415. (The range reported here is not as wide as measured by [2] for 72415 and 72417 combined; it is possible that 72417 is on average more Fe-rich than 72415). Not only did these 72415 olivines cristallize too fast to maintain equilibrium with the magma, but they then cooled at subsolidus temperature too fast to equilibrate by interdiffusion. Diffusion data for major elements in olivine [5] as used by [6] show that these Mg-Fe gradients would have been eliminated if they had been held at 1100 °C
for ~ 2,000 years or at 1000°C for ~ 5,000 years, at fO₂ = 10⁻¹⁴. The cooling times required to maintain the zoning are far too short for a deep plutonic origin.

Calcium analyses show a real and wide spread (Fig. 3), and the variation is large over distances as small as 50 μm. They are much wider than variations in replicate analyses of Marjalahti (Fig. 4), and do not appear to be caused by secondary fluorescence of inclusions. The CaO abundances are higher than in Marjalahti, 76535, and olivines for the Stillwater - Skaergaard intrusions (for a given Fo content), but lower than in olivines from rapidly-cooled rocks such as mare basalts (0.2 - 0.5% CaO) and impact melts (0.15 - 0.3% CaO). They are similar to olivines in terrestrial mantle xenoliths (0.07% CaO) but a lunar mantle origin is precluded on Mg/Fe zoning alone.

The amount of Mg/Fe zoning and the CaO contents in 72415 olivines are consistent with a shallow (hypabyssal) origin rather than a deep-seated plutonic origin. Neither feature can be attributed to the later shock events which affected the rock. Even if 72415 were impact-excavated during deep plutonic formation, it should not have Mg/Fe zoning. In contrast, the lack of Mg/Fe zoning and the low CaO contents of 76535 olivines [2, 7] are consistent with a deep plutonic origin, hence 72415 and 76535 are not closely related. A shallow origin is easier to reconcile with the old age of 72415 (4.45 b.y., new decay constants [1]) than is a deep plutonic origin, but still leaves open the question of how early magnesian magmas were produced, unless an early chilled crust was partially preserved. The ramifications are manifold but only partly explored.

References