The nakhlite meteorites, augite-rich cumulate igneous rocks, are part of the SNC suite which may have originated on Mars [1]. It is important to infer the original geological settings of the nakhlites to improve our understanding of their parent planet. Based on comparison of mineral textures of the nakhlites and comparable Earth rocks, the meteorites originated in thick flows and shallow intrusions of ultrabasic (picritic magma). One Earth environment where such rocks form, above mantle hot spots, is known from Mars.

The nakhlite meteorites (Nakhla, Lafayette, and Governador Valadares) are igneous rocks composed predominately of cumulus augite, with minor cumulus olivine and mesostasis (crystallized intercumulus magma) composed primarily of pyroxene, olivine, plagioclase, and magnetite [2,3]. The nakhlites (and Chassigny, a related olivine-rich cumulate) all crystallized at 1.25 x 10^9 years ago, and have similar parental magmas [3], similar initial isotope ratios [4,5], and similar cosmic ray exposure histories [6]. Although the nakhlites are similar, they are enough different that they must have come from separate igneous bodies. Nakhla and Governador Valadares have different initial Sr isotope ratios [4], while the nakhlites have more (and finer grained) mesostasis than does Lafayette [2].

A critical feature in understanding the geology of the nakhlites is the texture of the mesostasis. If the rock cooled rapidly, its mesostasis will be abundant and glassy. If cooling was slower, the mesostasis will be less abundant and crystalline; the slower the rock cooled, the coarser-grained the mesostasis minerals (e.g., [7]). With very slow cooling, no mesostasis will preserve and the final rock may be an adcumulate. Cooling rate can be related to depth of emplacement and thickness of the parent igneous body.

The textures of the nakhlite meteorites may be compared with those in igneous cumulate rocks from Earth, where the geologic setting and depth of emplacement are known. Augite-rich cumulate rocks are well preserved in portions of the Abitibi greenstone belt (Archaean age) of northern Ontario, and show textures nearly identical to those of the nakhlites. Augite cumulates comprise the lower half of a 125m thick sill (probably a magma) composed primarily of pyroxene, olivine, plagioclase, and magnetite. These conditions are reasonable if the nakhlites came from Mars, as volcanoes with thick lava flows and indirect evidence of shallow intrusions are common in the Tharsis region. The tectonic setting of Tharsis, a bulge above a mantle hot-spot, is better defined than that of greenstone belts [10]. High spot tectonics has been suggested as a cause of greenstone belt volcanism, and comparison of Tharsis with greenstone belts on Earth may provide insights into the tectonic development of both planets.

This work supported by NASA grant NAG-9-168

Nakhlites
Treiman, A. H.

Fig. 1. Augite cumulate from flow. Thin section in plane light, 4 cm vertical size. Augite crystals in dark, altered glass (?).

Fig. 2. Nakhla meteorite, thin section in plane light, 2.3 cm vertical size. Euhedral augite crystals in finely crystalline mesostasis.

Fig. 3. Augite cumulate from sill, thin section in plane light, 1.8 cm vertical size. Augite and altered olivine crystals (spotted) in adcumulate texture.

Fig. 4. Lafayette meteorite, thin section in plane light, 2.3 cm vertical size. Augite and olivine crystals in adcumulate texture.