The chemical composition of dark inclusions from the Allende meteorite.

A. Bischoff1, H. Palme2, B. Spettel1, R.N. Clayton3, and T.K. Mayeda3. 1Institut für Planetologie, Wilhelm-Klemm-Str.10, and Institut für Mineralogie, Corrensstr. 24, 4400 Münster; 2Max-Planck-Institut für Chemie, Saarstr.23, 6500 Mainz, F.R.G.; 3Enrico Fermi Institute, University of Chicago, Chicago, IL 60637, USA.

Dark inclusions (DIs) are common constituents in the Allende meteorite. They appear macroscopically black and featureless and consist predominantly of tiny subhedral to euhedral olivine crystals. DIs do not contain true chondrules. Almost spherical components that appear to be chondrules, turn out to be olivine aggregates that lack interstitial mesostasis material. DIs contain some Ca-pyroxene and a few very small CAIs consisting of spinel, perovskite and Ca-pyroxene. Fragments within the fine-grained olivine matrix include olivine (with variable FeO-contents), irregularly-shaped Ca-pyroxene-andradite inclusions, sulfide-rich aggregates and chromites.

In this abstract we report major and trace element data on 7 large dark inclusions from Allende. All elements were determined by INAA-procedures. Oxygen isotopes were determined on four of these inclusions. The results are given in Tables 1 and 2.

The major chemical characteristics of the dark inclusions are:

1) Somewhat higher contents than bulk Allende in Fe (+17%) and Mn (+12%) (Fig.1)
2) Higher Ca and lower Al contents than bulk Allende, leading to Ca/Al ratios as high as 4.5 (cosmic 1.08)
3) Large depletions in Na and K (up to a factor of 5)(Fig.2)
4) Some depletions (20-35%) in refractory lithophile and refractory siderophile elements (e.g. Sc, Fig.2, Ir, Fig.3).
5) Most other elements have abundances indistinguishable from bulk Allende (Table 1, Fig.3). This is especially remarkable for the rather volatile elements Zn and Se (Fig.2). These elements are diagnostic for C3-meteorites. The similar abundances of Zn and Se in dark inclusions and in Allende (i.e. C3-meteorites) show that they ultimately came from a C3-reservoir.

It can be shown from these data, that dark inclusions basically contain the same components as Allende. Their modal proportions are however quite different.

1) The higher FeO and MnO contents are due to the low abundance of iron poor phases; dark inclusions contain no chondrules and few forsteritic fragments.
2) The low alkali contents and simultaneously low Al-contents reflect the complete lack of Na-Al-silicates (plagioclase, sodalite, nepheline). The elevated Ca-values are caused by a relatively high modal content of Ca-rich pyroxene.
3) Dark inclusions contain no large Ca,Al-rich inclusion. Occasionally, small (< 200 μm) CAIs were encountered. Dark inclusions consequently have lower abundances of refractory elements.

Elements that are largely contained in metal, sulfide or in the fine grained olivine matrix have rather similar abundances as in bulk Allende (Ni, Co, As, Ga, Zn, Se), independent of volatility. Only Au shows some scatter. This is also observed in bulk Allende samples. It therefore appears that the abundances of sulfide and metal in dark inclusions and in bulk Allende are very similar. DBA-analyses of our suite of inclusions show indeed a S content of about 2% for the DIs (2.1% S in bulk Allende).

Oxygen isotopic compositions of dark inclusions plot on the upper end of the Allende mixing line (Fig.4). The lack of components low in δ^{18}O and δ^{17}O (CAIs) may be in part responsible for the extreme position of the dark inclusions.

The simplest and most straightforward interpretation of these data is that during aggregation of DIs larger components (chondrules, fragments, CAIs,
Chemical composition of dark inclusions
A. Bischoff et al.

Na-rich aggregates) were not accreted, probably because they were absent from the formation region, perhaps due to some type of grain size sorting. Our data also exclude formation of DIs by regolith processes.

Table 1: Allende dark inclusions

<table>
<thead>
<tr>
<th>Sample</th>
<th>Mg</th>
<th>Al</th>
<th>Ca</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-1</td>
<td>13.96</td>
<td>1.19</td>
<td>1.70</td>
<td>22.57</td>
</tr>
<tr>
<td>D-2</td>
<td>15.35</td>
<td>1.84</td>
<td>2.25</td>
<td>25.76</td>
</tr>
<tr>
<td>D-3</td>
<td>15.59</td>
<td>2.42</td>
<td>3.15</td>
<td>29.35</td>
</tr>
<tr>
<td>D-4</td>
<td>15.78</td>
<td>2.62</td>
<td>3.57</td>
<td>31.78</td>
</tr>
</tbody>
</table>

Fig. 1: Dark Inclusions in Allende

Fig. 2: Oxygen isotopes

Table 2: Oxygen isotopes

<table>
<thead>
<tr>
<th>Sample</th>
<th>δ18O</th>
<th>δ17O</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-1</td>
<td>5.73</td>
<td>4.23</td>
</tr>
<tr>
<td>D-2</td>
<td>4.59</td>
<td>3.59</td>
</tr>
<tr>
<td>D-3</td>
<td>3.93</td>
<td>3.93</td>
</tr>
<tr>
<td>D-4</td>
<td>2.74</td>
<td>2.74</td>
</tr>
</tbody>
</table>

** Jarosewich et al. (1985)
*** average of 4 Allende samples (MPI Kainz)
+ from Kallemeyn and Wasson (1981)
++ calculated from CI-ratios