THE ORIGIN OF 26Al. D. Dearborn1, T. Lee2 and C. J. Wasserburg3.

It has been known for a decade that large amounts of 26Al were present in the early solar system [1]. More recently, a surprisingly strong 1.8 MeV γ-ray emission line, characteristic of 26Al decay (mean life 1 Ma), has been detected in the interstellar medium [2,3,4]. In the following, we discuss some of the implications of this discovery on the origin of 26Al.

The observed γ-ray flux implies the presence of about $4M_\odot$ of 26Al if its sources are concentrated toward the interior of the galaxy (e.g., point source at the center, mimicking the CO distribution, etc.). If this represents a steady state abundance, then $4\times10^{-6} M_\odot$ of 26Al must be injected into the interstellar medium every year. The directional data suggest, but do not require, that this 26Al is distributed within 65° (i.e., 1 kpc if the distance is 10 kpc) of the galactic center. If correct, these observations pose severe constraints on the possible production sites of 26Al which so far include Wolf-Rayet stars, Type II supernovae, novae, and asymptotic branch giants (AGB).

Observations of the radio and far infrared flux, produced when Lyman continuum photons of O and B stars are reprocessed in H-II regions, indicate that about 10% of these stars reside in the inner kps of the galaxy [5]. This directly impacts the suggestions that massive stars (including Wolf-Rayet stars and Type II supernovae) are the source of 26Al, since in that case 90% of the 26Al would reside outside of the central region of the galaxy. However, more refined measurement of angular distribution of 26Al is required before these sources can be conclusively rejected.

In low mass sources, such as novae and AGB stars, 26Al is produced via proton capture on Mg seeds. For $T\lesssim7$ (temperature in units of 10^7K), the capture on 24Mg is too slow to contribute, so only the initial 25Mg abundance is available as seed for 26Al production. If that abundance is solar (6×10^{-5} by mass) and if the yield, defined as the ratio of ejected 26Al to initial 25Mg, is Y, then the total amount of ejecta that the 26Al sources return to the interstellar medium must be $0.067/Y M_\odot$/yr. If f denotes the fractional contribution of ejecta from 26Al sources to total mass ejected by all stars, then the total rate of returning mass to the interstellar medium would be $0.067/Y/f M_\odot$/yr. This return mass flux must be balanced by the removal rate due to star formation, if we are to have an interstellar medium at steady state. Therefore, the rate of star formation for the central kpc of the galaxy is $0.067/Y/f M_\odot$/yr from the 26Al observation. The star formation rate can also be derived from the above estimate that about 10% of all O and B stars are being formed in the galactic center. If the initial mass function estimated for stars for the solar neighborhood also applies to the galactic center, then the total star formation rate for the latter should be about $0.3 M_\odot$/yr using the simple Salpeter formula [5]. The comparison between these two estimates then implies $Y/f=0.2$. So Y is at least 20% since f must be less than 1. For more reasonable values of f, Y must approach 100%. Thus, nearly all initial 25Mg must be converted and quickly ejected. This can be relaxed by a factor of 7 if 24Mg can be utilized as seed nuclei. It can also be relaxed by a factor of about 10 if the 26Al is not restricted only to the galactic center. In any case, the 26Al production must be a highly efficient process. As we shall see below, this represents a challenge for nuclear astrophysics, yet to be satisfactorily met.

Recent calculations [6] of nucleosynthesis in novae indicate that $Y=1$ is possible for the artificial case of a low mass envelope containing exceed-
Dearborn, D. et al.

ingly high initial 12C. However, the small mass of the ejecta ($\sim 2.5\times10^{-5} M_\odot$) coupled with the low mass fraction for 26Al ($\sim 5\times10^{-5}$) results in the production of only $1.4\times10^{-9} M_\odot$ 26Al per nova. The 26Al injection rate discussed above thus requires 3000 novae per year in the central region of the galaxy, in contrast to the typical estimate of 40 novae per year for the entire galaxy. The high temperature of the novae explosion ($T_7 = 15-32$) not only causes proton reactions on 24Mg but also destroys 26Al. Hence, it does not help. Higher initial Mg abundance would enhance the production, reducing the above rate, and some novae seem to have such high initial abundance. Nonetheless, it is probably difficult to reconcile such a large disparity. Also, novae are believed to be a major source of 15N in the galaxy. A nearly two orders of magnitude increase in novae rate over the generally accepted value would have difficulty avoiding overproducing 15N in the galactic center. However, this cannot be dismissed outright without a modeling of chemical evolution, including 15N destruction mechanisms.

AGB stars are thought to have formed when thermal pulses caused their convective envelopes to penetrate more deeply and dredge up carbon-rich materials. If the base of the convective envelope enters a sufficiently hot region, then 26Al can be produced via proton capture. Subsequent loss of the envelope would then inject the newly synthesized 26Al into the interstellar medium. AGB stars cover spectral types M, C, S and J. Among these, only the J type stars were observed to have $^{170}/^{190}$ ratios consistent with base temperatures high enough to produce 26Al and must be considered as candidate sources. A simple model was constructed to evaluate Y for a range of base temperatures of $T_7 = 5-10$ and for envelope mass loss time scales in the range of 10^5-10^9 years. Typical values for Y were less than 0.03, insufficient to sustain 26Al, but for $T_7 > 7$ and timescales commensurate with the mean life of 26Al, Y could approach unity. However, at these temperatures, 24Mg is becoming a significant seed while the destruction of 26Al by protons also becomes substantial. Neither of these effects were included in our calculation. Thus a more detailed network calculation would be necessary to evaluate how large a value of Y can actually be obtained.

All of the sources considered here have difficulty in producing the observed interstellar 26Al. These difficulties are reduced but not eliminated if the 26Al production is not confined to the central region of the galaxy. Possible solutions include an initial mass function tailored to form primarily the 26Al sources and changes in key nuclear reaction rates to permit a large increase in seed nuclei (24Mg, perhaps even 20Ne) without enhancing the 26Al destruction rates. Other alternatives might be opened up by postulating rare transient conditions, such as a short burst of star formation or supermassive objects; but such ad hoc resolutions are difficult to prove and their invocation does little to teach us about the evolution of the galaxy.

The abundance of 26Al in the early solar system is several times higher than the presently observed interstellar value. If this is not the result from a nearby local source but represents the typical interstellar value, 4.6 giga-years ago, then the problem of its origin requires even more extreme resolutions than those just discussed.

Acknowledgements. T.L. thanks Caltech for hospitality. This work was supported in part by NASA Grant NAG 9-43.