
It was obtained early [1] that practically in all ordinary chondrite samples under investigation was observed definite (up to some percent) portions of the silicate mineral grains containing the tracks concerned with the low energy VH-nuclei of the solar cosmic rays (SCR) [2].

With a view to further more detail investigation of this subject it was continued measurement of the track parameters in the olivine grains separated from the microporphric chondrules of the unequilibrated ordinary chondrite Tieschitz H3.6. Totally 97 crystals which was a part of 34 chondrules was studied. Track density (p) measured in the optical microscope for ~90 percent of the crystals lies in very narrow interval ~ (1+5) x 10<sup>6</sup> cm<sup>-2</sup>. At that time the spread of p values (fig. 1a) for the crystals which was a part of the individual chondrules is not within the scope of the statistical errors of measuring. As it seen from a histogram parameters (fig. 1b) at least six specific cases (A-F) for this distribution may be indicated. The olivine crystals incoming in the individual chondrules conserved almost commonly (groups A and B) or partially (groups C,F and E) the pre-accretion exposure traces from VH-nuclei of SCR. The group D chondrules either was undergo by more intensity thermal annealing, or they consist only non-irradiated crystals. Obviously the individual chondrule matter in their formation processes suffered a different degree of the main thermal influence that do not smooth out during the all following meteorite history.

In so doing we are starting from two basic arbitrary assumptions. 1. The main thermal track annealing for the irradiated silicate crystals occured in the earliest stage before the starting of the microporphitic chondrules formation. 2. Microporphritic chondrules containing irradiated by SCR crystals have been formed at the relatively low-temperature aglomeration processes in the preaccretion stage of the chondrite parent body production. In this connection it is possible to expect that the radiation and thermal conditions of each individual chondrule taking a different course.

It should be noted that SCR irradiation for unshielding silicate crystals was possible only at the stage precursor to the chondrule formation processes. Degree of the thermal influence on this initial chondrule material varied at that time over a wide range. In spite of this obtained in this studies specific features of the track parameter distributions give possibility to exclude the effects, which was going at the pre-accretion stage from the total following history that was common for the chondrite matter as a whole.
PRE-ACCRETION IRRADIATION ... L.L.Kashkarov et al.


Figure 1. (a) Track-density ($\pm 16''$) in the olivine crystals from six (number 1-6) samples of the individual microporphyritic chondrules of the ordinary chondrite Tieschitz H3.6. (b) Histograms of the track-density distribution for the same crystals and chondrules which was grouping on the (A-F) types.