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Peculiar trends in Apollo 15 green glass, especially prominent in green glass "B", include 
positive correlations between Ni, Co, and incompatible elements and between SiOz and Mg# 
[1,2]. These trends are contrary to terrestrial experience where Ni and Co are inversely - - 

correlated with incompatibles and Mg# is inversely correlated with SO2.  Various assimilation 
[3] or source heterogeneity [4] schemes have been proposed to account for these trends. 

Results of recent experiments on behavior of metals in silicate melts at low f 0 2  [5] have 
led to the proposal that Ni and Co can be incompatible at low f 0 2  in silicate compositions 
similar to A15 green glass [6]. This observation introduces the possibility that the positive 
correlations among Ni, Co, and incompatibles obtain from a more traditional partial melting 
model, without recourse to assimilation, sulfide immiscibility, or delicate source heterogeneity, 
as discussed elsewhere in this volume [6]. Before such a model can be accepted as a possible 
history for A15 green glass, it must be demonstrated that other trends, such as the major 
element trends, can also be obtained by the same model. Such a demonstration is made here. 

Early explanations of major element trends in A15 
green glass (before separate groups of green glasses were 
identified [2] and before positive correlations between 
transition metals and incompatibles were observed [I]) 
included a simple batch partial melting scheme with the 
liquid composition controlled by the high-pressure cotectic, 
01 + 2 px [7]. However, because this scheme proposes that 
the amount of Si02 and FeO in the melt both decrease 
with increasing degrees of partial melting, it does not 
adequately explain the positive correlation between Mg# 
and SO2. The problem of the positive correlation between 
Mg# and SiOt can be overcome by realizing that, at high- F, E, S; o, 
pressure, increasing degrees of partial melting can result in Fig. 1 Schematic drawing of the 
illcreases in the concentration of SiO, in the melt. This is 01-Si0, binary. Arrows indicate 
demonstrated for the binary, 01-Si02, in Fig. 1 [8], and for ~~~~~,~.~ $ ~ g ~ ~ ~ e ~ ~ ~ ~  
the ternary, 01-SO2-An, in Fig. 2 [9]. degree of partial melting. 

This general relationship is also true for the 
,p k bops Fig. 2 Arrow 

indicates more complex green glass melts. We used the 
direction of phase-equilibria program SILMIN [lo] to model 

the compositi.ons and proportions of phases on the 
cotectic at lOkbars as a function of degree of 

partial melting partial melting. Aluminum concentrations in the 
on the 01-0px phases were calculated from [ l l ]  and [12], because 

SILMIN does not consider A1 in 01  or Opx in its 

FO En 51 0, calculations. Table 1 
A close fi t  to the observed trends in A15 green glass "Bn Si02 52.4 

T i 0  0.2 are obtained by using the composition in Table 1 as the A1 d3 6.0 
system composition and partially melting it 48 to 63% (batch Feb 13.5 
equilibrium melting [13]). Data for green glass "By141 are MgO 21.7 
compared with calculated curves in Figs. 3 and 4. It can be CaO 6.2 
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seen that these major element 
trends are reasonably modeled by 

- 
Summary: At high pressure, m0.45 ! I 

concentration of Si02 in a partial E 4 5  4 6  4 7  4 8  4 9  

melt can increase with increasing Wt% Si02  

this scheme. The trend for CaO 2 0.55, 

degree of partial melting. This can 
result in positive correlations 
between Mg# and SO2. Modeling 
the phase equilibria at high- 
pressure using the SILMIN 
program, major element trends in 
A15 green glass "B" can be 
successfully modeled by simple 
batch equilibrium melting. 
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(not shown) is not modeled well $ 0.54 - 
(using partition coefficients from 0, 0.53 - 
[15] to estimate the concentrations 0.5 2 - 
of CaO in 01 and Opx). This 5 0.51 - 
discrepancy can possibly be 0.5 _ 
explained by the presence of a - 
small amount of Cpx on the $ 0.48 - 
liquidus, which was not predicted 0.47 - 
by the SILMIN program. ' 0.46 - 

e 
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44% partial melt Fig. 3 

44% partial melt 
a 7.9 

\ : Fig. 4 --k 20 77% 
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