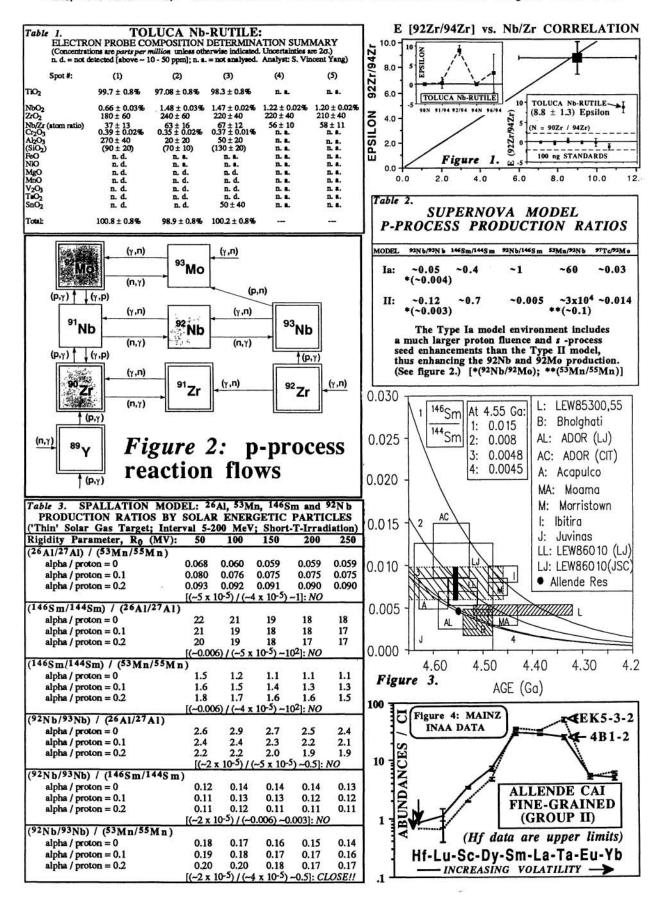
$^{92}\text{Nb}/^{93}\text{Nb}$ AND $^{92}\text{Nb}/^{146}\text{Sm}$ RATIOS OF THE EARLY SOLAR SYSTEM: OBSERVATIONS AND COMPARISON OF p-PROCESS AND SPALLATION MODELS

C. L. Harper, H. Wiesmann, and L. E. Nyquist, SN2, NASA Johnson Space Center, Houston, TX, 77058 USA; W. M. Howard, LLNL, Livermore, CA 94550 USA; B. Meyer, Dept. of Physics and Astronomy, Clemson Univ., Clemson, SC 29634-1911 USA; Y. Yokoyama, UA 184 du CNRS, 1, rue René Panhard, 75013 Paris, France; M. Rayet and M. Arnould, Institut d'Astronomie et d'Astrophysique, Univ. Libre de Bruxelles-CP 165, 50 ave. F. D. Roosevelt, B-1050, Bruxelles, Belgium; H. Palme, B. Spettel, and K. P. Jochum, Max-Planck-Institut für Chemie, Saarstrasse 23, D-6500 Mainz, FRG.


 92 gNb ($T_{1/2} = 36$ My) and 146 Sm ($T_{1/2} = 103$ My) are both shielded 'p-only' nuclei, not produced in either the s- or r- processes. Stable p-process abundances in the bulk solar system (BSS) are a cumulate of supernova inputs into the protosolar 'reservoir' over pre-solar galactic history. The presence of two long-lived p-nuclides in the early solar system presents the prospect of a well-defined p-process nucleocosmochronology, analogous to that inferred from 235 U, 238 U and 232 Th for the r-process. In principle, a measurement of the BSS ab initio 92 Nb/ 146 Sm abundance ratio will strongly constrain the history of p-processing in the protosolar region over the last few 100 My prior to 4.56 By, dependent on the development of adequate astrophysical models and accurate production ratio estimates. A significant complication is the possibility that 92 Nb was made 'locally' by early T-Tauri protons [1], in which case, the loss of a p-process cosmochronometer could be the gain of a very early premain sequence p-monitor--- an attractive trade-off! (92 Nb could also be made by neutrino spallation in supernovae [2], and in the new " α -process" scenario of [3].) Here we report: (i) evidence that 92 Nb was live in the early solar system; (ii) the resulting BSS ab initio 92 Nb/ 146 Sm ratio from 146 Sm/ 144 Sm determinations, and (iii) production ratio estimates for two contrasting p-process supernova models, and a range of spallation conditions.

production ratio estimates for two contrasting *p* -process supernova models, and a range of spallation conditions. A well-resolved ⁹²Zr anomaly has been measured in a 110μg Nb-rutile sample from the Toluca type IAB iron meteorite (fig. 1): [8.8 ± 1.3, 2σ]ε. A result of [2 ± 2, 2σ]ε was also obtained for a group II fine-grained Allende inclusion: 4b-1, having Ta/Hf ~22 x the CI ratio (fig. 4). Nb/Zr ratios of the analysed rutile sample was ~150, as estimated by electron probe (Nb, table 1) and by isotope dilution (Zr) of the sample solution, (which contained ~84% Zr from inclusions and blank). A direct Nb/Zr ratio of 0.09 (1.4 x CI) was obtained by SSMS on an aliquot of 4B-1, (demonstrating that Ta/Nb can be strongly fractionated in type II CAI). The rutile datum yields an initial ⁹²Nb/⁹³Nb ratio of [2 ± 1] x 10-5. For [146Sm/144Sm]_{4.55 By} = 0.006 ± 0.002 [4, fig. 3], [92Nb/146Sm]_{4.55 By} = 0.3 ± 0.2 is obtained. Data will be presented for EK5-3-2, a type II inclusion having Nb/Zr = 1.7 (27 x CI). Two contrasting supernova models have been proposed recently for reproducing the BSS stable *p* -abundances: a

Two contrasting supernova models have been proposed recently for reproducing the BSS stable *p* -abundances: a Type Ia carbon deflagration model [5], and a Type II scenario based upon modelling of core-collapse explosion in massive stars [6]. These differ in both their processing conditions and initial (*s* -process) seed distributions. The Type I model erodes a strongly enhanced AGB-type (He shell flash) seed distribution assumed to exist at the edge of the C-O core, whereas the Type II model erodes a 'weak' *s* -process distribution produced during hydrostatic He core burning in a massive star. Reaction channels in the ⁹²Nb region for the Type Ia model are shown in figure 2. Production ratio estimates for ⁹²Nb/⁹³Nb, ⁹²Nb/⁹²Mo, ¹⁴⁶Sm/¹⁴⁴Sm, ⁹²Nb/¹⁴⁶Sm, ⁵³Mn/⁹²Mo, ⁵³Mn/⁵⁵Mn, and ⁹⁷Tc/⁹²Mo are given in table 2. The Type II results refer to detailed modelling of SN1987A [7]. It is interesting that the Type Ia and Type II models give different predictions for the ⁹²Nb/¹⁴⁶Sm ratio, which may therefore provide a test for these models. At the present stage, it is difficult, however, to exclude or favor one or other. The astrophysical plausibility of the Type Ia scenario remains somewhat speculative, while the Type II results correspond to modelling of an observed object in the Large Magellanic Cloud. Many nuclear physics uncertainties also remain. Moreover, ⁹²Nb could have been produced 'locally', as our spallation models (table 3) suggest. However, we note that τ(⁹²Nb)/τ(¹⁴⁶Sm) ~0.3 is in good agreement with [⁹²Nb/¹⁴⁶Sm]_{4.55 By} / [P(⁹²Nb)/P(¹⁴⁶Sm)] for the Type Ia model, consistent with a galactic origin of ⁹²Nb in these supernovae.

(table 3) suggest. However, we note that τ(¹²Nb)/τ(¹⁴⁰Sm) ~0.3 is in good agreement with [¹²Nb]¹⁴⁰Sm]_{4.55 By} / [P(¹²Nb)/P(¹⁴⁶Sm)] for the Type Ia model, consistent with a galactic origin of ¹²Nb in these supernovae. Results are shown in table 3 for ²⁶Al, ⁵³Mn, ⁹²SNb, and ¹⁴⁶Sm produced in a 'local irradiation' spallation model, similar to that of [8]. Meteorite data are consistent only with ⁹²Nb and ⁵³Mn, which are the most sensitive proton monitors. Interpretation of ⁹²Nb as a T-Tauri spallation product yields a proton fluence of ~2 x 10¹⁹ cm-², (into the parental reservoir of Allende and Toluca). This is ~2x greater than the rough limit estimated from the BSS ⁶Li/⁴He ratio, (for associated α-irradiation of unfractionated solar material), but is well below the limits obtained from ¹³⁸La/¹³⁹La and ¹⁸⁰Ta/¹⁸¹Ta ratios [1]. It is also consistent with rough estimates for T-Tauri activity inferred from X-ray and radio astronomy [9]. In summary, the source of ⁹²Nb is unclear. Of course, if it was made 'locally' (and hence with significant ⁵³Mn: cf., table 3) in the early solar system, then ⁹²Nb is not a p-process cosmochronometer. A 2% upper limit is obtained for 'local' production of ¹⁴⁶Sm, which is therefore a galactic p-process product. ²⁶Al/²⁷Al ~ 5 x 10-5, according to our spallation model, is ~5x that predicted for the fluence required to produce ⁹²Nb, and ~13x that predicted from ⁵³Mn. As an extended irradiation period and/or decay interval increases these discrepancies, ²⁶Al cannot be explained as a local irradiation product by our model. Refs: [1] D.D. Clayton et al., (1977). Ap. J., 214: 300; [2] S. E. Woosley et al., (1990). Ap. J., 356: 272; [3] S. E. Woosley and R. Hoffman (1991 preprint); [4] Lugmair et al., (1975). EPSL, 27: 79; — (1983). Science, 222: 1015; Lugmair and S. J. G. Galer, (1989). Meteoritics, 24: 296; S. B. Jacobsen and G. J. Wasserburg, (1984). EPSL, 67: 137; Lugmair and W. M. Howard. (1990). Ap. J., 344: L81; — (1990). LPS

92Nb/93Nb AND 92Nb/146Sm RATIOS OF THE EARLY SOLAR SYSTEM...: Harper, C. L., et al.

