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92gNb (T2 = 36 My) and 146Sm (T, = 103 My) are both shielded ‘p -only' nuclei, not produced in either
the s - or r - processes. Stable p -process abundances in the bulk solar system (BSS) are a cumulate of supernova
inputs into the protosolar 'reservoir' over pre-solar galactic history. The presence of two long-lived p -nuclides in
the early solar sirstem gresems the grospecl of a well-defined p-process nucleocosmochronology, analagous to that
inferred from 235U, 238U and 232Th for the r -process. In principle, a measurement of the BSS ab initio
92Nb/146Sm abundance ratio will strongly constrain the history of p -processing in the protosolar region over the
last few 100 My prior to 4.56 By, dependent on the development of adequate astrophysical models and accurate
production ratio estimates. A significant complication is the possibility that 92Nb was made "locally' by early T-
Tauri protons [1], in which case, the loss of a p -process cosmochronometer could be the gain of a very early pre-
main sequence p -monitor--- an attractive trade-off! (92Nb could also be made by neutrino spallation in supernovae
[2], and in the new "a-process” scenario of [93!) Here we report: (i) evidence that 92Nb was live in the early solar
system; (ii) the resulting BSS ab initio 92Nb/146Sm ratio from 146Sm/144Sm determinations, and (iii)
production ratio estimates for two contrasting p -process supernova models, and a range of spallation conditions.

A well-resolved 92Zr anomaly has been measured in a 110pug Nb-rutile sample from the Toluca type IAB iron
meteorite (fig. 1): [8.8 £ 1.3, 2c]e. A result of [2 + 2, 20]e was also obtained for a group II fine-grained Allende
inclusion: 4b-1, having Ta/Hf ~22 x the CI ratio (fig. 4). Nb/Zr ratios of the analysed rutile sample was ~150, as
estimated by electron probe (Nb, table 1) and by isotope dilution (Zr) of the sample solution, (which contained
~849% Zr from inclusions and blank). A direct Nb/Zr ratio of 0.09 (1.4 x CI) was obtained by SSMS on an aliquot
of 4B-1, (demonstrating that Ta/Nb can be stmnle fractionated in type II CAI). The rutile datum yields an initial
92Nb/93Nb ratio of [2 * 1] x 10-5. For [146Sm/144Sm]4 55 By = 0.006 £ 0.002 [4, fig. 3], [92Nb/146Sm]4.ss By
=0.3 £ 0.2 is obtained. Data will be presented for EK5-3-2, a type Il inclusion having Nb/Zr = 1.7 (27 x CI).

Two contrasting supernova models have been proposed recently for reproducing the BSS stable p -abundances: a
Type Ia carbon deflagration model [5], and a Type II scenario based upon modelling of core-collapse explosion in
massive stars [6]. These differ in both their processing conditions and initial (s -process) seed distributions. The
Type I model erodes a strongly enhanced AGB-type (He shell flash) seed distribution assumed to exist at the edge of
the C-O core, whereas the Type II model erodes a 'weak' s -process distribution produced during hydrostatic He core
burning in a massive star. Reaction channels in the 92Nb region for the Type Ia model are shown in figure 2.
Production ratio estimates for 92Nb/93Nb, 92Nb/92Mo, 146Sm/144Sm, 92Nb/146Sm, 53Mn/92Mo,
53Mn/35Mn, and 97Tc/92Mo are given in table 2. The Type II results refer to detailed modelling of SN1987A
[7). It is interesting that the Type Ia and Type II models give different predictions for the 92Nb/146Sm ratio,
which may therefore provide a test for these models. At the present stage, it is difficult, however, to exclude or
favor one or other, The astrophysical plausibility of the Type Ia scenario remains somewhat speculative, while the
Type II results correspond to modelling of an observed object in the Large Magellanic Cloud. Many nuclear
physics uncertainties also remain. Moreover, 92Nb could have been produced 'locally’, as our spallation models
(table 3) sugglest. However, we note that T(O2Nb)/t(146Sm) ~0.3 is in good agreement with [92Nb/146Sm]4 55 By
/ [P(O2Nb)/P(146Sm)] for the Type Ia model, consistent with a galactic origin of 92Nb in these supernovae.

Results are shown in table 3 for 26Al, 53Mn, 928Nb, and 146Sm produced in a 'local irradiation’ spallation
model, similar to that of [8]. Meteorite data are consistent only with 92Nb and 53Mn, which are the most
sensitive i)roton monitors. Interpretation of 92Nb as a T-Tauri spallation product yields a proton fluence of ~2 x
1019 ¢cm-2 , (into the parental reservoir of Allende and Toluca). This is ~2x greater than the rough limit estimated
from the BSS 6Li/4He ratio, (for associated o-irradiation of unfractionated solar material), but is well below the
limits obtained from 138La/139La and 180Ta/181Ta ratios [1]. It is also consistent with rough estimates for T-
Tauri activity inferred from X-ray and radio astronomy [9]. In summary, the source of 92Nb is unclear, Of course,
if it was made 'locally' (and hence with significant 53Mn: ¢f., table 3) in the early solar system, then 92Nb is not a
p -process cosmochronometer. A 2% upper limit is obtained for 'local' production of 146Sm, which is therefore a
galactic p -process product. 26A1/27A1 ~ 5 x 10-5, according to our spallation model, is ~5x that predicted for the
fluence required to produce 92Nb, and ~13x that predicted from 53Mn. As an extended irradiation period and/or
decay interval increases these discrepancies, 26Al cannot be explained as a local irradiation product by our model.
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