Cr ISOTOPIC COMPOSITION OF DIFFERENTIATED METEORITES: A SEARCH FOR ⁵³Mn. I. D. Hutcheon¹ and E. Olsen² ¹The Lunatic Asylum, Division of Geological & Planetary Sciences 170-25, Caltech, Pasadena, CA 91125. ²Field Museum of Natural History, Chicago, IL 60605

Studies of Pd-Ag isotope systematics in iron and stony-iron meteorites have provided evidence for the *in situ* decay of 107 Pd($\tau_{14} = 6.5 \times 10^6$ y) and the formation of small differentiated planetary bodies within $\sim 10^7$ y of 107 Pd production [1]. If 53 Mn ($\tau_{14} = 3.7 \times 10^6$ y) was added to the nebula during late-stage nucleosynthesis in comparable amounts to 26 Al and 107 Pd, i.e. (53 Mn/ 55 Mn) $_o \sim 5 \times 10^5$, some evidence should be preserved in meteorites containing excess 107 Ag*. Olivine from the Eagle Station pallasite contains small 53 Cr excesses [2], but until recently no evidence for large 53 Cr excesses correlated with Mn/Cr was reported. Davis and Olsen [3] found a large 53 Cr excess in the IIIA iron El Sampal and inferred an initial 53 Mn/ 55 Mn of $\sim 5 \times 10^{-7}$. We have investigated the Mn-Cr isotopic systematics of four iron meteorites and one pallasite to see if evidence for 53 Mn is widespread among differentiated meteorites and to examine possible correlations between 53 Mn- 53 Cr and 107 Pd- 107 Ag timescales.

In this study we focussed on Mn-rich phosphate minerals in the Springwater pallasite and in 4 IIIAB iron meteorites -Bella Roca, Cape York, El Sampal and Grant. (Table 1) Phosphates are concentrated in troilite nodules or found at troilite-metal boundaries (Cape York). The silico-phosphate in Springwater occurs at an olivine-metal-troilite contact. Olivine adjacent to silico-phosphate was also analyzed. Mn is homogeneous in olivine but Cr is strongly depleted at crystal boundaries enabling us to obtain much higher Mn/Cr than previous studies [2]. Analyses were performed with the PANURGE IMS-3F using an 16 O primary beam and mass resolving powers (MRP) between 3500 and 6000. All molecular species except 52 CrH+ were fully resolved; measurements at MRP 6000 showed 52 CrH+ 53 Cr+ 52 Cr ontribution based on 49 Ti+; the correction was $\leq 10\%$. Isotope ratios were corrected for mass-dependent fractionation using a power law after normalizing to 50 Cr/ 52 Cr = 0.051859. 53 Cr/ 52 Cr ratios are expressed as 53 Cr relative to 0.11338. 55 Mn/ 52 Cr ratios were calculated from 55 Mn+ 52 Cr+ using sensitivity factors determined in silicates and high-Cr phosphates.

All of the meteorites show evidence for excess 53Cr in Mn-rich, Cr-poor phases and for normal Cr in chromite or troilite. The ⁵³Cr excesses range from δ ⁵³Cr = 5.5±2.0% in Cape York to δ ⁵³Cr = 32.2±4.1‰ in El Sampal and are linearly correlated with 55Mn/53Cr ratios in the respective minerals (Fig. 1&2). Analyses of silica-phosphate and olivine in Springwater give well resolved ⁵³Cr excesses and with data from troilite define a linear array with slope, 53 Cr*/ 55 Mn = (1.4±0.4) x 10⁻⁵. These data show δ^{53} Cr ~ 100 times higher than measured in olivine from Eagle Station and yield a 53Cr⁺/55Mn ratio ~ 6 times higher [2]. Analyses of two phosphates in Cape York show evidence for δ^{53} Cr > 0 (Fig 2). One high Mn phosphate gave precise data (δ^{53} Cr = 5.5±2.0%) but relatively low Mn/Cr; a second phosphate contained only trace Cr, heterogeneously distributed, and gave much higher Mn/Cr and δ^{53} Cr but poorer precision (δ^{53} Cr = 23±14‰). Together with data from chromite these data yield an array with slope similar to that found for Springwater, 53 Cr*/ 55 Mn = (2.2 ± 1.0) x 10^{-5} . Most phosphates from the other iron meteorites have much higher Mn/Cr ratios but comparable 53Cr excesses. Phosphate in El Sampal gives δ^{53} Cr = 32%, confirming the value reported in [3], but with a Mn/Cr ratio that is ~ 40% lower. The slope of the array, 53 Cr*/ 55 Mn = (8 ± 1) x 10^{-7} , is accordingly higher. Phosphates in both Bella Roca and Grant span a large range in Mn/Cr. Phosphates in Bella Roca yield δ^{53} Cr = 0.5±2.0% with 55 Mn/ 52 Cr = 12 and δ^{53} Cr = 14.6±3.0% with 55 Mn/ 52 Cr = 950. These data yield an array with slope ~ 2x higher than the El Sampal array, 53 Cr*/ 5 Mn = (1.7±0.4) x 10 6 . Phosphates from Grant span the widest range in Mn/Cr, 12 to 2800 with corresponding δ^{53} Cr values of 5.0±1.5% to 25.6±5.0%. Data for chromite and 3 phosphates with Mn/Cr \geq 1000 define an array with slope, 53 Cr*/ 55 Mn = (1.0+0.4) x 10⁻⁶ and passing through δ^{53} Cr = 0. Data from one high-Mn, high-Cr phosphate, however, lies above the line: δ^{53} Cr = 4.0±1.5 with 55 Mn/ 52 Cr = 12.

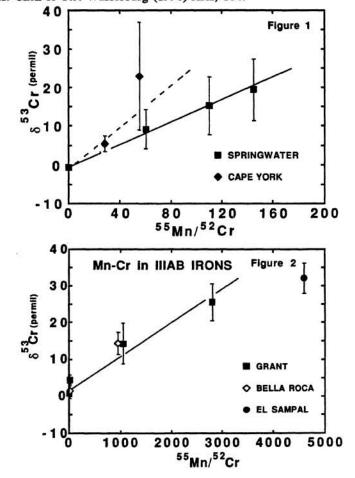
These data are most plausibly interpreted as reflecting the presence of radiogenic 53Cr* produced

by the *in situ* decay of ⁵³Mn, subsequent to the differentiation and cooling of the parent planetesimals. The long exposure ages of IIIAB irons and pallasites require consideration of cosmic ray spallation-induced isotope effects in Cr. We assessed the magnitude of these effects based on the analysis of spallogenic Cr in Grant metal [4,5]. Assuming Fe is the only significant target and normalizing spallation yields to Fe contents of the phosphates, we find a significant correction for spallation (10% in δ^{53} Cr) only for one phosphate containing \sim 17ppm Cr. In all other Grant phosphates the correction is \leq 3% and does not affect our conclusions. The Grant data reported are corrected for spallation.

The results suggest that ⁵³Cr excesses are widespread in phases with high Mn/Cr in two classes of differentiated meteorites. The ⁵³Cr excesses appear well correlated with Mn/Cr ratios, further suggesting the production of ⁵³Cr* by *in situ* decay of ⁵³Mn. The highest initial ⁵³Mn abundance inferred from these data, ⁵³Cr*/⁵⁵Mn ~ 2.2 x 10⁻⁵, approaches the value found for Allende CAI [2], confirming the suggestion that comparable abundances of 4 short-lived nuclides, ²⁶Al, ⁵³Mn, ¹⁰⁷Pd and ¹²⁹I, were added to the solar nebula as a last-gasp addition of freshly synthesized nuclear material. The inferred initial ⁵³Mn abundances appear to vary rather widely, ⁵³Cr*/⁵⁵Mn ranges from ~ 8 x 10⁻⁷ to ~ 2 x 10⁻⁵. If this variation reflects a decay interval for ⁵³Mn, the data suggest age differences of 6 x 10⁶y between Cape York and the other IIIAB irons. A comparison between Mn-Cr and Pd-Ag chronologies provides mixed results. El Sampal, Grant and Cape York have ¹⁰⁷Ag*/¹⁰⁸Pd ~ 1.5 x 10⁻⁵. The similarity in ⁵³Cr*/⁵⁵Mn also suggests El Sampal and Grant are contemporaneous but the higher abundance of ⁵³Cr* in Cape York does not fit the simple model of formation of IIIAB irons in a common planetismal.

Ref: [1] J.H. Chen & G.J. Wasserburg (1984) GCA 47, 1725; [2] J-L Birck & C.J. Allegre (1988) Nature 331, 579; [3] A.M. Davis & E. Olsen (1990) LPS XXI, 258; [4] M. Shima & M. Honda (1960) EPSL 1, 65; [5] T. Shimamura et al. (1986) LPS XVII, 795; [6] J.H. Chen & G.J. Wasserburg (1990) XXI, 184.

Table 1


Phosphate minerals in differentiated meteorites.

	1	2	3	4
Na ₂ O	3.42	nd	9.75	23.2
MgO	32.30	nd	nd	1.7
SiO ₂	2.36	.05	nd	nd
P2O5	47.95	40.95	40.74	40.9
CaO	9.83	.06	0.11	26.1
Cr ₂ O ₃	nd	nd	0.82	0.1
MnO	0.80	19.67	7.41	2.8
FeO	4.34	38.95	42.26	5.5
Sum	101.00	99.68	101.09	100.3
	••			

Springwater silico-phosphate;
 Grant 2165A;

Fig 1. Mn-Cr isotope systematics of Springwater and Cape York. Solid line through Springwater data has slope ⁵³Cr*/⁵⁵Mn = 1.4 x 10⁻⁵; dashed line through Cape York data has slope 2.2 x 10⁻⁵

Fig 2. Mn-Cr isotope systematics of IIIAB irons. Solid line is fit to Grant data; slope is ⁵³Cr*/⁵⁵Mn = 1 x 10⁻⁶

^{3.} Grant 836 B; 4. Cape York