ENIGMATIC CIRCULAR FEATURES IN THE CANTALOUPE TERRAIN ON TRITON.

M.A.Ivanov and V.K.Borozdin; Vernadsky Institute, USSR Acadeay of Science, Moscom 117975 USSR.

Cantaloupe terrain on Triton (1) has a conplex rugged surface. Two clear norphologic elenents are visible there: chaotically sparced rianed diaple cells and linear aultiple ridges. Boundaries of the cantaloupe mith the adjacent plains are not sharp but rather gradual. In order to outline the cantaloupe boundaries and to study its structure the coaputer processing mas applyied to the inages. He processed the inages by the running windom $3 * 3$ and $5 * 5$ pihels. The difference between the axinue and ainiaus brightnes was calculated at each position of the windon. If the difference was below a certain level the surface covered by window at this position was considered as snooth and aapped as black pixel. As a result we have received aaps of relatively snooth (black) and rough (white) areas which then analysed fron geological point of view.

In Fig. 1 is shown a part of Voyager-2 frane 11395.21 and its conputer sap. The frane covers a part of Triton surface where cantaloupe terrain is merged with plains naned as laninated in (2) or terrased in (3). At the inage a transition between the two types of the terrains is questionable but the ap shows the boundary position more clear. The boundary is apparentely between dark and light parts of the produced nap and coincides with the NW trending feature which reseables a relict of aultiple ridge. Within the cantaloupe part of the ap circular features of two types are seen. The first ones are represented by saall dotted circular and senicircular features typically about $30-40 \mathrm{~km}$ across. They are concentrated at the west part of the area. A comparison with real inage shows that these features correspond to the individual cells of cantaloupe.

Features of the second type are represented here by two large circular ones (at the central part of the area). In contrast to the cantaloupe cells the big rings becone to be visible only after the processing and obscure on the real inage where there are only slight hints of their presence. These situation rises a question: are the big rings real features or they are artefacts? In order to exanine this we have processed by our tecnique the "white noise" inage and as a result the sinilar "white noise" was obtained. But if the noise have been previously snoothed our processing revealed sone circular features which size mas conparable with the smoothing window size. Features found due to processing of tritonian inages are auch larger than the running window 50 we inclined to consider the big rings as actual structures.

Among the considered big features the larger one looks at the ap having dark interior surrounded by wide light $20 n e$ uhich in turn is bordered by the next dark circular zone. Dianeter of the outer eost dark zone is about $130-140 \mathrm{kn}$. As it is seen at the real inage the central part of the feature is occupied by snooth depression encircled by relatively elevated rugged complex rin consisting of narrow ridges alternating with snall relatively flat areas. Outside the rin the surface is getting lower and becones more smooth. In contrast to this another feature has light interior which is bordered by dark and light concentric arcs. Apparent dianer of the second feature is $100-120 \mathrm{kn}$. Its central part is a depression mith elongated central done. The depression is bordered by gentle rin capped by snall knobs. Outward the ria the surface is getting lower and becones auch more conplex consisting of chaotically dispersed knobs, short rides and snall depression. The second big ring is recognized auch morse than the first one. Nevertheless this circular feature is apparentely actual. At the next processed frane, 11393.50, (Fig.2) a feature sinilar to the described ones is revealed. It is placed near the terainator and detected because of circular arrangenent of the appping elenents. Its apparent dianeter is $160-180 \mathrm{kn}$. At the real inage the feature is not recognized reliably. The area which is occupied with the feature consist of crowded bulbous cantaloupe cells and bordering in places by patches of relatively snooth surface. Because of the feature locality its internal structure is unclear. However the feature seens to be actual too.

If the reality of the big rings is more or less no doubt, their origin is enigna. If they are of endogenic nature then the big rings associate with processes leading to the foration of circular structures - volcanisa or diapirisn. The only exogenic process leading to the fornation of circular features on the surface is iapact cratering. If the big rings are of exogenic nature than they say represent a tritonian variant of paliepsests known on other icy satellite (4). Boyce pointed out the possible presence of such features on Triton (5).

REFERENCES: 111.A.Snith et al.,1989,Science,V.246,1422-49. 2)S.K.Croft,1990,LPSC XXI (Abstr.),248-9.
3)A.T. Basilevsky et al., 1990,Advances in space research (in press). 4) Satellites of Jupiter, 1982, D. Morrison ed., 972, The Univ. of Arizona Press. 5)J.H. Bboyce,1990,LPSC XXI (Abstr.),121-2.

Fig. 1 Part of Voyager-2 frane 11395.21 (a) and its computer map (b). At the inage the big rings revealed by computer aapping are shown by dotted lines. Inside lines show the central parts of the features. Light lineament at the indicates a relic of aultiple ridge which is considered as the boundary between the cantaloupe and the adjacent terrain.

Fig. 2 Part of Voyager-2 frane 11393.50 (a) and its conputer app (b). Dotted line shows probable boundary of the third big ring revealed by coaputer mapping. The feature consist of closed cantaloupe cells. Dark and light lineanents at the ap indicates the aultiple ridges.

