ASTEROID FLUX AND IMPACT CRATERING RATE ON VENUS. E.M. Shoemaker, R.F. Wolfe, and C.S. Shoemaker, U.S. Geological Survey, Flagstaff, AZ 86001.

By the end of 1990, 65 Venus-crossing asteroids had been recognized (Table 1); these represent 59% of the known Earth-crossing asteroids. Further studies, chiefly numerical integrations of orbit evolution, may reveal one or two more Venus crossers among the set of discovered asteroids. We define a Venus crosser as an asteroid whose orbit can intersect the orbit of Venus as a result of secular (long range) perturbations. Venus crossers revolving on orbits that currently overlap the orbit of Venus are here called Venapol asteroids, and those on orbits that don't overlap are called Venamor asteroids; we recognize 42 Venapols and 23 Venamors.

Collision probabilities with Venus for 60 of the known Venus crossers have been determined by the methods described in [1]. The mean collision probability with Venus is $6.2 \times 10^{9} \mathrm{yr}^{-1}$, which is 1.45 times the mean collision probability of Earth-crossing asteroids with Earth [1]. Hence, the collision rate of asteroids on Venus is $0.59 \times 1.45=0.86$ times the collision rate on Earth. The collision rate per unit area on Venus is $0.86 \times 0.509 \times 10^{\circ} \mathrm{km}^{2} / 0.460 \times 10^{\circ} \mathrm{km}^{2}=0.95$ times the rate per unit area on Earth.

The cratering efficiency (for sufficiently large asteroids) is somewhat higher on Venus than on Earth, owing partly to the higher rms impact speed of the asteroids and partly to the slightly lower surface gravity on Venus. If we neglect atmospheric retardation, the average cratering efficiency is 1.14 times higher on Venus than on Earth (as measured by relative crater diameters). This is equivalent to a correction to the cratering rate of $(1.14)^{2.27}=1.34$ relative to the cratering rate on Earth. Hence, the nominal asteroid impact cratering rate on Venus is $0.95 \times 1.34=1.27$ times the asteroid cratering rate on Earth. Before accounting for losses, we add about 10% to the total asteroid cratering rate for the undiscovered Venus-crossing asteroids whose orbits lie entirely inside the orbit of Earth and remain undetected in the conventional search programs. Thus, the total (uncorrected) asteroid cratering rate on Venus is $1.1 \times 1.29=1.4$ times the rate on Earth.

Two corrections should be considered for asteroids impacting on Venus. First, extinct comets probably should be eliminated. The ratio of extinct comets among Earth-crossing asteroids is very uncertain. No known Earth crossers are D-type objects, but there is good presumptive evidence that a few dark asteroids (F -type and C-type) are extinct comets (e.g., Phaethon, the source of the Geminid meteors, and 1986 JK , which appears cometary from its radar properties). We estimate that about 10% of the Venus-crossing asteroids are extinct comets that won't survive atmospheric passage (unless they are very large- 10 km diameter or greater). This reduces the cratering rate relative to Earth to about 1.27.

Secondly, a rough correction for atmospheric deceleration of projectiles can be made as follows. Nominally, a 20 - km -diameter crater on Venus is produced by an S-type asteroid 1.71 km in diameter. At an average entry angle of 45°, this body sweeps out a mass of atmosphere equivalent to about $92 \mathrm{~kg} \mathrm{~cm}^{-2} / \sin 45^{\circ}$ $=130 \mathrm{~kg} \mathrm{~cm}^{-2}$. The longitudinal mass at the stagnation point of a nominal S-type asteroid is $1.71 \times 10^{5} \mathrm{~cm} \mathrm{x}$ $2.4 \mathrm{gm} \mathrm{cm}^{-3}=410 \mathrm{~kg} \mathrm{~cm}{ }^{-2}$. From conservation of momentum, the impact speed ν_{1} will be $\nu_{1}=\nu_{0} \times 410 /$ $(410+130)=0.76 \nu_{0}$, and the cratering efficiency will be only $(0.76)^{23.4}=0.85$ times the efficiency for the uncorrected velocity. The cratering rate will be reduced by the factor $(0.85)^{2.27}=0.69$. About 40% of the craters are produced by S-type asteroids and the other 60% produced by C-type asteroids, which are larger but have lower density than S-type [1]. At the same kinetic energy, the longitudinal mass of C-types is the same as S -types and the correction for momentum transfer is the same. For crater production at $20-\mathrm{km}$ diameter, the asteroid cratering rate on Venus is $0.69 \times 1.27=0.88$ times the rate on Earth. With increasing crater diameter, the relative rate increases; at $50-\mathrm{km}$ crater diameter, the relative rate on Venus is $0.84 \times 1.27=1.06$ times the rate on Earth. For craters $\geq 20 \mathrm{~km}$ diameter, our best estimate of the asteroid impact cratering rate is $(3.7 \pm 2.0) \times 1 \sigma^{15} \mathrm{~km}^{-2} \mathrm{yr}^{-1}$ on Earth [1] and (3.3 $\left.\pm 1.8\right) \times 1 \sigma^{15} \mathrm{~km}^{-2} \mathrm{yr}^{-1}$ on Venus.

All except a few of the largest impact craters on Venus probably have been produced by asteroids, as the atmosphere tends to shield the surface from impact of comets. Applying our estimate of the crater production rate, we find an average crater retention age at 20 km crater diameter of $260+310,-90$ million years for the Venusian surface imaged by the Venera spacecraft [2] and $240+290,-85$ million years for the portion of the surface imaged by the Magellan spacecraft [3].

References: [1] Shoemaker, E.M., Wolfe, R.F., and Shoemaker, C.S., 1990, in Sharpton, V.L., and Ward, P.D., eds., Geol. Soc. America Spec. Paper 247, p. 155-170. [2] Schaber, G.G., Shoemaker, E.M., and Kozak, R.C., 1987, Solar System Research, v. 21, p. 89-93. [3] Schaber, and 7 others, 1991, this volume. [4] Veeder amd 5 others, 1989, Astron. Jour., v. 97, p. 1211-1219. [5] Williams, J.G., 1969, Ph.D. Thesis, Univ. Calif. at Los Angeles, 270 p. [6] Shoemaker, E.M., Williams, J.G., Helin, E.F., and Wolfe, R.F., 1979, in Gehrels, T., ed. Asteroids: Tucson, Univ. Ariz. Press, p. 253-282. [7] Opik, E.J., 1951, Proc. Roy. Irish Acad., v. 54A, p. 168-199.

VENUS CROSSERS: Shoemaker, E.M. et al.
TABLE 1. VETUS-CROSSIEG ASTEROIDS: RAGEITUDES, DIAMEERS CROSSIMG DEPTHS, AND COLLISIOX PARNAETERS

		H	$\underset{k m}{\text { Dias }}$	$\underset{\text { A }}{ }$	Depth $\mathbf{A} \mathbf{U}$	avo	-	$\stackrel{i}{\operatorname{deg}}$	$\begin{aligned} & d r / d t \\ & \Delta y \end{aligned}$	$\stackrel{y y}{2}_{10^{4} y r}$	$\begin{array}{r} 38 \\ 1 \\ \hline \end{array}$	$\begin{array}{r} P 0 \\ 1 \\ \hline \end{array}$	$\underset{k i / s}{\nabla i}$
VEMAPOL ASEEROIDS									$10^{4 / 75}$		$10^{9} 7$	$10^{9} 7 \mathrm{~F}$	
3200	Phaethon	14.63	6.9	(0.14)	-	1.271	(0.89)	(22)	-	-	-	(2.2)	(41)
1566	ICarus	16.45	0.9	0.198	0.596	1.078	0.316	15.0	1.9	5.32	2.3	3.9	36.0
2212	Hephaistos	14.0	-5	0.239	0.653	2.163	0.890	8.74	25	0.83	0.62	2.1	38.3
	1990 \%0	20.5	-0.2	0.265	0.485	1.234	0.785	21.0	2.1	4.79	1.2	2.4	34.9
3838	1989 VA	17.0	-1	(0.29)		0.728	(0.60)	(29)				(4.8)	(29)
	1986 wa	15.5	-3	0.381	0.302	1.505	0.747	24.7	1.9	4.11	0.77	1.6	32.6
	1990 5M	16.5	-2	0.393	0.452	2.157	0.318	10.7	11	1.06	0.62	1.9	31.4
2100	Ra-shalox	16.12	2.4	0.402	0.448	0.332	0.516	8.76	0.38	9.20	8.6	11	22.3
2340	Hathor	20.2	(0.2)	0.403	0.387	0.344	0.523	5.19	0.42	8.48	13	16	22.1
3753	1986	15.0	-3	0.412	0.374	0.998	0.587	15.8	0.57	7.53	3.2	4.7	25.6
	1974 RA	14.0	-5	(0.42)		1.775	(0.76)	(38)				(1.0)	(36)
	1984 EB	16.4	1.4	0.429	0.485	2.221	0.807	3.27	14	0.76	1.7	4.2	29.2
	5025 P-L	15.9	-2	(0.44)		(4.2)	(0.90)	(6.2)				(1.1)	(31)
1864	Daedalus	15.02	(3.1)	0.451	0.216	1.461	0.691	20.1	1.3	3.91	1.2	2.1	28.6
	1954 2A	18.9	0.0 .5	0.471	0.368	0.777	0.394	4.41	0.21	10.9	23	23	17.8
3362	Thufu	18.15	0.7	0.479	0.302	0.990	0.516	7.76	0.44	7.36	7.2	9.3	21.4
2201	oljato	15.56	1.4	0.511	0.382	2.174	0.765	1.38	7.4	0.89	3.8	6.0	25.4
2101	Adonis	18.2	-1	0.513	0.345	1.875	0.727	2.09	3.4	1.58	4.8	6.9	24.6
1865	Cerberus	16.91	1.0	0.522	0.226	1.080	0.517	14.4	0.40	6.81	4.0	5.1	22.0
	1990 MV	15.0	-3	0.543	0.202	1.622	0.665	29.4	-			2.4	29.2
4450	1987 SI	17.20	-1	0.555	0.247	1.442	0.615	1.97	0.94	3.35	11	11	21.1
	1989 PB	17.2	-1	0.567	0.201	1.063	0.467	9.62	0.31	6.86	7.0	8.1	19.0
	1979 IB	19.0	-0.5	0.586	0.286	2.264	0.741	12.0	3.27	0.99	1.2	2.0	23.4
4183	1959 LM	14.60	4	0.594	0.152	1.981	0.700	10.2	-			1.8	22.2
4341	1987 KF	15.70	-3	0.597	0.237	1.837	0.675	6.80	1.4	1.84	3.3	4.4	21.0
	1983 TF2	17.5	-1	0.605	0.140	2.439	0.752	16.4	--1.			0.60	24.1
$\begin{aligned} & 4034 \\ & 1981 \end{aligned}$	1986 PA	18.20	1	0.608	0.160	1.060	0.426	10.3	0.22	7.10	8.4	8.8	17.6
	Midas	16.9	-1	(0.62)		1.776	(0.65)	(40)				(1.5)	(32)
	1937 U8	17.0	-1	0.627	0.185	1.639	0.617	6.67	0.70	2.58	5.4	6.0	19.1
	1990 BG	14.0	-5	0.634	0.126	1.486	0.573	32.2	0.11	4.81	6.2	2.4	27.5
	1989 QF	17.0	-1	0.640	0.142	1.155	0.445	5.73	0.22	5.88	14	14	16.1
	1989 \%	19.0	-0.5	0.643	0.132	0.915	0.297	1.94	0.12	8.97	59	42	13.7
1862	Apol10	16.23	1.4	0.652	0.147	1.471	0.557	7.38	0.36	3.44	8.0	7.5	17.5
	1987 OA	18.5	-1	0.658	0.140	1.490	0.558	13.5	0.26	3.50	6.2	4.7	18.8
	1988 EG	18.0	-1	0.665	0.124	1.270	0.476	3.14	0.22	4.81	24	19	15.4
3554	Amun	15.94	2.0	0.672	0.074	0.974	0.310	22.7				3.7	19.6
	1990 VA	20.0	-0.3	0.679	0.090	0.984	0.310	14.2	0.07	8.56	16	13	15.8
	1990 T61	15.0	-3	0.681	0.286	2.486	0.726	4.63	1.4	0.55	4.8	3.5	18.5
4581	1989 FC	20.60	-0.2	0.681	0.095	1.023	0.334	4.79	0.10	7.16	35	30	13.5
3360	1981 VA	16.55	-1.8	0.654	0.061	2.462	0.722	24.7				1.7	24.3
	1989 kz	18.0	-1	0.688	0.085	1.080	0.363	12.8	0.08	7.22	16	13	15.6
2063	Bacchus	17.6	-1	0.694	0.052	1.078	0.356	10.1				13	14.7
TEMAMOR ASTEROIDS													
	1990 EA	17.0	-1	0.426	0.320	2.567	0.834	4.10	-		-	1.5	30.1
	1989 DA	18.0	-1	0.427	0.320	2.166	0.803	6.12			-	1.6	29.1
	1982 TA	15.40	1.8	0.450	0.296	2.297	0.804	13.7				0.88	29.5
3288	Soleucus	15.34	2.8	0.685	0.061	2.032	0.663	4.73	---			0.68	17.0
	1990 \%ג	19.5	-0.4	0.688	0.058	1.721	0.600	1.30	--			8.1	15.9
	1990 \%	17.5	-1	0.691	0.054	1.571	0.560	4.52				4.0	15.6
	1990 U5	23.5	-0.05	0.692	0.054	1.709	0.595	3.00				3.2	15.7
	1988 VP4	15.5	-3	0.692	0.054	2.263	0.694	12.9				0.77	18.9
	1983 LC	19.0	-0.5	0.694	0.053	2.629	0.736	1.11				1.2	17.0
	1988 zB	17.5	-1	0.717	0.029	1.467	0.511	5.32				4.0	14.1
	1988 TA	21.0	-0.2	0.717	0.030	2.541	0.535	4.63				3.5	14.2
	1980 WF	18.5	0.6	0.721	0.026	2.231	0.677	5.07	-			0.43	15.4
2329	Orthos	15.1	-3	0.726	0.019	2.404	0.698	20.1	--			0.52	21.2
	1978 CA	17.8	1.9	0.727	0.019	1.125	0.354	26.6				0.45	21.5
2062	Aten	16.96	0.9	0.739	0.007	0.966	0.235	19.2				0.71	16.8
	6743 P-L	17.3	-1	0.740	0.007	1.681	0.560	8.89				0.16	15.3
	1950 DA	15.8	-2	0.742	0.003	1.683	0.559	13.4	\square			0.07	16.7
	1983 VA	16.5	-2	(0.81)						otic or			
	1973 IA	15.5	-3	(0.88)	-		-					-	
	1986 JK	19.0	-1	(0.90)	-				5:2 Co	Aensura	1ity		
37522608	Canillo	15.6	-2	(0.98)	-	-	--	-					
	Soneca	17.57	0.9	(1.03)					3:1 Co	-easura	ility		
$\begin{aligned} & 2608 \\ & 1915 \end{aligned}$	quetzalcoatl	18.97	0.3	(1.08)	-	-			3:1 Co	censura	ility		

Fote:
Within each elass (Venapols and veasmors), astoroids are listed in order of increasing perihelion distance: estinated periholion at the time of venus erosing is used to order all asteroids ving depths. other astoroids are listod in order of current periholion distamee.
formiae. is absolute magnitude in the ∇ band, as determined from observation by interaationaliy adopted formulat.

The colum headed Dian gives the estimated diameter in kilometers. Accurately deterained diameters, based on infrared observations, have been taken chiefly from [4]. Diameters estimated from acerrate magnitudes, where albedos have been assumed on the basis of spectrophotometric classification, are shown ia parentheses. Approximate diameters, vhere magnitudes are based on photographic observations and spectrophotometric class is unkaova, are proceded by syabol.
ferihelion distance, q, is at the time of venus erossing, exeept for values in parentheses,
which aro osculating perimolion distances.
Dopth is the erossing dopth the maximus overlap of the orbit of the asteroid with the orbit of Venus along the radius to the node) deteraized from the theory of Williams [5]. the ioverifoble values tt the time of Vemus crossing. Tc is the period of procession of the amjor axis vith respect to the line of the nodes in the invariable plane. Ps is the probability of collision vith veaus calculated from the equations of Shoemaker ot al. [6], and Po is probability of collision vith venus calculated from the equations of opik [7]. Uncertain values are shown in parentheses.

The colum headed vi gives the impect speed in kilometers per second, corresponding to the orbital olements shown for the time of collision with venus. Collision is assumed to oceur at 0.723 AU for Feaapols and at 0.746 AU for venamors.

