Determination of Solar-Proton Fluxes Using Carbon-14 in Lunar Rocks; Janet M. Sisterson, Harvard Cyclotron Lab., Harvard University, Cambridge, MA 02138; Herminia Román, John S. Vogel, and John R. Southon, McMaster University, Hamilton, Ontario L8S 4L8; Robert C. Reed, SST-8, MS-D438, Los Alamos National Lab., Los Alamos, NM 87545.

Radioactivities produced in the top ~1 cm of lunar samples by solar cosmic rays (SCR) can be used to determine SCR-particle fluxes over various time periods. The solar-proton fluxes determined by direct energetic-particle measurements or using lunar radioactivities are given in Table 1, which is modified slightly from (1). This table has many blanks or large uncertainties because of the lack of cross sections with which to unfold the lunar radioactivity-versus-depth profiles (1). A few cross sections have been measured recently for the production by low-energy protons of the radionuclides listed in Table 1, such as for 41Ca (2,3) and for 10Be and 26Al (4). The measured 10Be cross sections of (4) for $E_p<185$ MeV are higher than those estimated by (5), and the SCR 10Be production rates calculated with them are ~10% higher than those using the old set (6). Here we discuss new experimental cross sections for unfolding the lunar 14C record.

The lunar 14C profile of (7) was unfolded with cross sections in (8), for the dominant, >90% of production (9). 16O(p,3p)14C reaction used the cross sections of (10). The cross sections of (10) were revised by (11) using better cross sections for the 27Al(p,3p)24Na monitor reaction. The solar-proton fluxes from the 14C data are interesting as they are much higher than those from longer-lived radionuclides (Table 1), although some fluxes might move upwards, e.g., for 1–5 Ma (6). Until recently, the 14C production cross sections of (10) had not been independently checked.

Using an irregular-shaped piece of the Bruderheim meteorite as a target, (12) reported a cross section for the 16O(p,3p)14C reaction at 150 MeV of 6.0±0.1 mb, which was ~3 times higher than that of (10). They assumed that all the 14C was made from oxygen. Their cross section was suggested that the high-solar-proton fluxes inferred from the lunar 14C measurements were due to the cross sections used for 14C. These results have been re-analyzed using 24Na activities measured in aluminum foils attached to the target’s upstream and downstream faces. The 24Na activities corresponded to cross sections that differ by ~2 with those of (13). Re-examination of the irradiation conditions showed that an incorrect parameter had been used in calibrating the monitor chamber used to determine the total number of protons incident on the target. Using the correct parameter, the beam intensity increased by a factor of 2.31, and the measured 27Al(p,3p)24Na cross sections were those expected. Scaling the 16O(p,3p)14C cross section of (12) by the inverse of 2.31 yields a cross section of 2.6 mb, much closer to that of (10) and to a value reported verbally by Ed Fireman at LPSC-80 in 1989 for a CO$_2$ target of 1.5 mb. The beam energy was also found to have been 148 MeV, not the value of 150 MeV in (12). The uncertainty of this revised cross section should also include ~5% each for beam intensity and the fraction made from oxygen.

Table 1. Solar-proton integral fluxes averaged over various time periods.

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Data Source</th>
<th>Flux References</th>
<th>R_{co} (MVe)</th>
<th>$E>10$</th>
<th>$E>30$</th>
<th>$E>60$</th>
<th>$E>100$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1976–1986</td>
<td>IMP-8</td>
<td>(Goswami et al., 1988)</td>
<td>14</td>
<td>40</td>
<td>63</td>
<td>5</td>
<td>0.6</td>
</tr>
<tr>
<td>1965–1975</td>
<td>SPME</td>
<td>(Reedy, 1977)</td>
<td>15</td>
<td>90</td>
<td>92</td>
<td>30</td>
<td>8</td>
</tr>
<tr>
<td>1954–1964</td>
<td>22Na, 55Fe</td>
<td>(Reedy, 1977)</td>
<td>15</td>
<td>100</td>
<td>378</td>
<td>136</td>
<td>59</td>
</tr>
<tr>
<td>~10^5 y</td>
<td>14C</td>
<td>(Boecki, 1972)</td>
<td>7</td>
<td>~70</td>
<td>~72e</td>
<td>~26e</td>
<td>~2e</td>
</tr>
<tr>
<td>~2×10^5 y</td>
<td>41Ca</td>
<td>(Klein et al., 1990)</td>
<td>2</td>
<td>~70</td>
<td>~28e</td>
<td>~7e</td>
<td>~1.5e</td>
</tr>
<tr>
<td>~3×10^5 y</td>
<td>81Kr</td>
<td>(Reedy and Marti, 1991)</td>
<td>1</td>
<td>~85</td>
<td>~74e</td>
<td>~4e</td>
<td>~e</td>
</tr>
<tr>
<td>~5×10^5 y</td>
<td>36Cl</td>
<td>(Nishizumi et al., 1989)</td>
<td>16</td>
<td>~42e</td>
<td>~35e</td>
<td>~8e</td>
<td>~2e</td>
</tr>
<tr>
<td>~10^5 y</td>
<td>26Al</td>
<td>(Kohl et al., 1978)</td>
<td>17</td>
<td>100</td>
<td>70</td>
<td>25</td>
<td>9</td>
</tr>
<tr>
<td>~2×10^5 y</td>
<td>10Be</td>
<td>(Nishizumi et al., 1988)</td>
<td>6</td>
<td>~70</td>
<td>~35e</td>
<td>~8e</td>
<td>~2e</td>
</tr>
<tr>
<td>~5×10^5 y</td>
<td>53Mn</td>
<td>(Kohl et al., 1978)</td>
<td>17</td>
<td>100</td>
<td>70</td>
<td>25</td>
<td>9</td>
</tr>
</tbody>
</table>

a. Spectral shape in rigidity, usually 10–30 MeV. b. Omnidirectional fluxes in protons/(cm2 s); energies in MeV. c. Not measured (1965–1973) or sometimes not reported (1973–1986). d. Energy is below main reaction thresholds. e. Few or no cross sections available, see text.

© Lunar and Planetary Institute • Provided by the NASA Astrophysics Data System
unknown amounts due to the irregular target geometry and the extraction. Further refinement of
the cross section for the CO₂ target (J. Sisterson, priv. comm.) gives 1.6 ± 0.1 mb at 158 MeV.

A new measurement of the \(^{16}\text{O}(p,3p)^{14}\text{C}\) cross section was carried out using stacks of quartz
plates irradiated with a beam of 63-MeV protons from the Crocker Nuclear Laboratory cyclotron
at the University of California at Davis. The \(^{14}\text{C}\) produced was extracted by crushing the quartz
under argon and heating the powder to 1000°C with an oxidizer in an evacuated sealed quartz tube
and was measured by accelerator mass spectrometry (18). The proton beam stopped in the stacks
and out-scattering from the sides was negligible (19). In view of the relatively low proton energy,
\(^{14}\text{C}\) production from secondary neutron reactions could be safely neglected, and the final plates in
the stacks were used as blanks to determine sample processing backgrounds. Tests showed that
the extraction technique was essentially 100% efficient, and that the effects of \(^{14}\text{C}\) losses during
crushing and the adsorption of modern CO₂ during sample processing were both small (18). The
results (Table 2 and Fig. 1) show fair agreement with the data of (10).

Production rates for \(^{14}\text{C}\) by solar protons from oxygen were calculated using the cross sections
of (10) as shown in (8) and the new ones presented here. Rigidity spectral shapes with \(R_0\) of 70 and
100 MV were used. The total \(^{14}\text{C}\) production rates were ~10–20% lower with the new cross sections
than with those of (10), with the higher new cross sections below 42 MeV being less important
than the lower ones at higher energies. From 0 to 1 cm, protons above 100 MeV contributed
~10% to ~25% of the total \(^{14}\text{C}\) production. These calculations show that the high \(^{14}\text{C}\)-derived
fluxes in Table 1 are probably not due to the cross sections used to unfold the measurements of
(7). Measurements of additional cross sections for the production of \(^{14}\text{C}\) are planned for these and
other energies from oxygen and at a few energies from silicon.

Table 2. \(^{16}\text{O}(p,3p)^{14}\text{C}\) cross sections from quartz targets (18).

<table>
<thead>
<tr>
<th>(E_p) (MeV)</th>
<th>(\sigma) (mb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>61 ± 2</td>
<td>1.8 ± 0.3</td>
</tr>
<tr>
<td>58 ± 2</td>
<td>1.2 ± 0.2</td>
</tr>
<tr>
<td>54 ± 2</td>
<td>1.4 ± 0.2</td>
</tr>
<tr>
<td>50 ± 2</td>
<td>1.4 ± 0.3</td>
</tr>
<tr>
<td>46 ± 2</td>
<td>1.2 ± 0.2</td>
</tr>
<tr>
<td>36 ± 2</td>
<td>1.0 ± 0.2</td>
</tr>
<tr>
<td>25 ± 3</td>
<td>0.19 ± 0.04</td>
</tr>
</tbody>
</table>

Fig. 1. \(^{16}\text{O}(p,3p)^{14}\text{C}\) cross sections reported by (10) (open circles) and
as revised by (11) (open squares) and as measured for CO₂ (filled circle),
Bruderheim (x), and quartz (filled triangles) targets. Energy spreads are
not indicated.