NEW DATA ON ^{146}Nd EXCESS IN HNO$_3$- AND HClO$_4$-SOLUBLE FRACTIONS OF
EFREMOVKA CV3 CHONDRITE: S.F. Karpenko, A.V. Fisenko, A.V. Ljalykov, L.F. Semenova
and Yu.A. Shukolyukov, Vernadsky Institute of Geochemistry, Russian Academy of
Sciences, Moscow, Russia

In the study of HNO$_3$- and HClO$_4$-soluble fractions of demineralized
residue of Efremovka CV3 chondrite [1] we found excesses of only two neodimium
isotopes - ^{143}Nd (up to 4%) and ^{146}Nd (up to 2%). ^{143}Nd excess as was
proposed by Lugmair et al. [2] may be connected with α-decay of ^{147}Sm and
penetration of ^{143}Nd as recoil nuclei into carboniferous phases, but the
origin of excess Nd is less understandable. Moreover there was a slight
possibility of laboratory contamination of the samples with ^{146}Nd used as a
tracer in our usual practice, so we made a new series of experiments with
another portion of Efremovka, measuring isotopic composition of neodimium in
HCl-, HNO$_3$- and HClO$_4$- soluble fractions of Acid Resistant Residue (ARR) of
this meteorite, which was obtained after demineralisation of the sample (59
grams in weight) in HCl and HF+HCl mixture at 80°C, leaching it in NaOH +H$_2$O$_2$
and separation into thin- and coarse-grained fractions in acetone. After that
the thin-grained part of the residue was treated with 3N HCl (80°C, 1 month),
concentrated HNO$_3$ (80°C, 8h) and concentrated HClO$_4$ (140°C and 220°C, 4 hours)
and neodimium was separated from the obtained solutions (labeled as EC1-5,
EN-5 and EC10-4 and EC10-5, correspondingly) and its isotopic composition
was measured on mass-spectrometer using usual technique. In order to minimize
the possibility of laboratory contamination of the samples with ^{146}Nd an
ion-exchange column used for samples EN-5, EC10-4 and EC10-5 was newly
prepared from the new portion of BioRad 50W x3 resin, which was never used
before for any other sample.

In this paper we present only the data for EN-5 and EC10-5 samples - we
failed to get reliable results for EC10-4 but EC1-5 contained an enormous
quantity of Nd (1730 ng) so the results of EC10-5 measurements should be
discussed specially.
It is seen from the data that ^{146}Nd enrichment of EN-5 and ECI0-5 fractions was found too in this experiment and it is more well-manifested as compared with previous results [1]. Moreover the enrichment of HNO$_3$-fractions in both cases is about two times larger than that of HClO$_4$-fractions. So we can conclude that the new series of experiments showed that previously found enrichment of HNO$_3$- and HClO$_4$-soluble fractions of ARR from Efremovka CV3 chondrite with ^{146}Nd is real. The possible genesis of this excess isotope was recently proposed in [3].